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1. SUMMARY

This report presents a numerical method for the analysis of wing-body
combinations, and for the design of optimum wing camber surfaces in the pres-
ence of a body. The method is based on the linearized theory of supersonic
flow. The wing and body are represented by a large number of singularities
located in the plane of the wing, on the surface of the body, and along the body
axis. The velocity components induced by these singularities at selected con-
trol points define a matrix of aerodynamic influence coefficients. The aero-
dynamic matrix is used to calculate the pressure distribution onthe wing and
body for given boundary conditions, or to determine the wing camber surface
corresponding to a given aerodynamic loading. Also, the wing camber surface
required to minimize the drag of the wing-body combination under given con-
straints of lift and pitching moment may be determined by additional operations
on the aerodynamic matrix.

The method has been programmed for a digital computer. A special effort
has been made to minimize the number of geometrical inputs required in the
program by including a geometry definition section and a geometry paneling
section as integral parts. A description of the program, including a flow chart
and the input formats required for specific problems, is included in the report.

Application of the method to a wide variety of examples has shown good
correlation with both theory and experiment. In particular, detailed pressure
and force comparisons are made on a wind-tunnel model tested at Mach 1. 8.
The program also is used to predict the drag reduction that might be achieved

by optimizing the wing camber surface on this model.
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2, INTRODUCTION

Several methods are currently available (references 1 through 4) for cal-
culating the camber surface of minimum drag for an isolated wing at a given
lift coefficient in supersonic flow. However, none of these allows for the effect
that a wing-mounted body may have in modifying the optimum wing camber sur-
face. A new method, based on the linearized theory of supersonic flow is pre-
sented for calculating the optimum camber surface of a wing in the presence of
a body. In this method, the boundary condition of tangential flow is satisfied
simultaneously on both wing and body, eliminating any iteration procedures
formerly required in solving problems of this type. The solution to this prob-
lem has important applications in the design of supersonic aircraft.

The primary objective of this study has been to develop a method of opti-
mizing camber surfaces for a wing in the presence of a body. However, because
of its formulation in terms of aerodynamic influence coefficients, the method is
sufficiently general to solve a wide variety of equally important problems in
supersonic flow. For example, it may be used to determine the pressures and
forces acting on wing-body configurations of given shape or to design a wing
having a given pressure distribution in the presence of a body. The effect of
wing thickness in modifying surface pressures may also be included. In addition,
the surface pressures and forces on isolated wings or bodies may be calculated.
The bodies may have regular or irregular cross sections, camber, and inci-
dence. In all of these problems, the accuracy of the results ultimately depends
on the number of boundary points at which the flow equations are satisfied.

The aerodynamic methods described in this report are considered to be
significant contributions to the linearized theory of supersonic flow, Although
a similar approach has been presented recently by H. Carlson and W, Middleton
of the NASA Langley Research Center (reference 5 ), their theory was re-
stricted entirely to the analysis of isolated planar wings. In particular, the
development of the nonplanar, constant-pressure solution to the linearized
wave equation and its application to the analysis of supersonic wing-body inter-

ference problems are considered of additional significance,



This report (Part 1) desceribes the details of the acrodynamic theory under-
lyving the computer program, shows the agrecement hetween the results and
other theories, validates the method by comparison with experimental data,
and presents a sample casce of design optimization. It is also self-sufficient
for guiding the reader in program usage. The second half of this report (Part
I, reference 6) provides the details necessary for understanding the digital
computer program. Subroutine descriptions, several sample problems, and a
program listing provide the bulk of Part II,

The other report is Boeing Document D6-10740 (reference 7), Summary
Description of Method of Optimizing Camber Surfaces for Wing-Body Combina-
tions at Supersonic Speeds. It is a brief summary intended to introduce the
scope of the work performed and put the results into context.

Much credit is due Dr. Tse Sun Chow, a mathematics research specialist
at Boeing, for the integration and checking of the many functions used in the
vortex singularity representation of the method. The aerodynamic work was
accomplished by members of the Aerodynamics Research Unit, while the pro-
gramming and checkout was accomplished by members of the Technical Support

Section, all members of The Boeing Company Airplane Group.
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3. LIST OF SYMBOLS

Acrodynamic influence coefficient

Panel inclination

Matrix of aerodynamic influence coefficients

Panel area

Aspect ratio

Normalized panel edge slope
Wingspan

Matrix of velocity components
Normal velocity component
Wing chord

Aerodynamic coefficient
Pressure drag

Downwash function

Normal force

Auxiliary function

Number of circumferential points on body
Line source strength

Number of line singularities in body
Lift

Body length

Panel edge slope:

Mach number

Pitching moment

Unit normal vector

Normal velocity component
Number of panels

Pressure

Strengths of vortex singularities
Pressure function

Dynamic pressure

Radial distance

Body radius

Fraction of panel clord defining control point location



() Sidewash function
Surface area
Strength of line singularities
Nondimensional perturbation velocity in x direction
Free-stream velocity

Nondimensional perturbation velocity in y direction

£ < o0& 3w oW

Nondimensional perturbation velocity in z direction
X, ¥, Z Transformed axis system

X,Y,Z Definition axis system

Q
=]
®
o
~

Angle of attack

Panel inclination (see p. 42)

M2 -1

Ratio of specific heats for air (1.40)
Difference (e.g., Ap, A8)

Angular coordinate

—
S

Panel inclination (see p. 42)

Lagrange multiplier

> > © @D R ™o R

Leading-edge slope
Conormal vector
3.14159

Density of air
Volterra's function
Domain of dependence
Velocity potential

Integration variables in Cartesian system

O™ 6 299 DA<
3
-
[

Arbitrary potential function

Subscripts

a Axial component

A Referred to body coordinate system

B Body

c Cross component

CP Center of pressure

D Referred to definition coordinate system



D

T <y ®nIymAT

z

X
=

Xy ¥y 2

Doublet

Drag

Fin

Influenced panel number
Iafluencing panel numher
Line singularity number
Corner point number
Lift

Lower surface

Moment

Pressure

Radial component
Reduced

Wing root

Source

Thickness (wing)

Upper surface

Vortex

Wing

Referred to Cartesian coordinates
Partial derivative
Tangential component

Free stream condition

Superscripts

Referred to primed system of coordinates
Referred to double primed system of coordinates
Fixed point or value
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4. AERODYNAMIC THEORY

4.1 Description of Method

The method of aerodynamic influence coefficients is used to calculate the
pressures, forces, and moments on arbitrary wing-body combinations at super-
sonic speeds, and to predict the optimum camber surface of the wing in the
presence of the body. In this method, the wing and body are represented by a
large number of singularities located in the plane of the wing, on the surface of
the body, and along the body axis. It is assumed that the flow perturbations due
to this system of singularities are sufficiently small that the equations governing
the flow can be linearized without introducing significant errors into the analysis.

The three components of velocity induced by each elementary singularity are
calculated at specified surface control points. In particular, the velocity com-
ponent that is both normal to the body axis, and in a plane which is parallel to
the body axis and perpendicular to the surface through each control point is
required. The magnitude of this normal velocity component induced at control
point i by the jth singularity of unit strength is referred to as the aerodynamic
influence coefficient aij' Thus the resultant normal velocity at point i is given
by the sum of the products of the aerodynamic influence coefficients with their
respective singularity strengths,

This resultant normal component of velocity is used to satisfy the surface
.slope boundary conditions at each control point, and the resulting system of
linear equations is solved for the unknown singularity strengths. The matrix
of the coefficients of this system of equations is known as the matrix of aero-
dynamic influence coefficients, or aerodynamic matrix, and plays an important
part in the following analysis.

In actual practice, the singularity strengths required to satisfy the given
boundary conditions are not solved in a single step. The boundary conditions
corresponding to wing thickness, body thickness, and body camber and incidence
are separated, and the strengths of the specific singularities used to satisfy

them are determined independently. In the final stage of the calculation, these



separate solutions are combined by linear superposition, and any residual inter-
ference effects are satisfied, together with the wing camber and incidence bound-
ary conditions, by surface distributions of singularities on the wing and body.

In order to expedite the calculation of the aerodynamic influence coefficients,
the wing and body are subdivided into a large number of small panels, as illus-
trated in figure 1. Each panel has one or more singularities associated with it,
depending on the way the panel boundary conditions are specified. For example,
the wing is represented by a maximum of 100 panels located in the wing refer-
ence plane. Two types of singularities are specified for each panel. First, a
surface distribution of vorticity corresponding to a unit pressure difference
across the panel is used to simulate the lifting effects of camber, twist, and
incidence; and secondly, a surface distribution of sources is used to simulate
the effect of wing thickness. It will be shown later how the boundary conditions
on the surface of the wing can be completely satisfied by these two independent
types of singularities.

The effects of body thickness, or camber and incidence are represented
by a maximum of 50 line sources and doublets distributed along the body refer-
ence axis. In addition, the surface of the body is subdivided into a maximum of
100 panels, located in the region of influence of the wing-body intersection.
These body panels simulate surface distributions of vorticity similar to those
used on the wing, and are used to cancel the interference effects of the wing on
the body in this region. The boundary conditions on the body, as on the wing,
are specified so that they exactly match the number of singularities used to
represent the flow.

The location, and geometric orientation of each elementary singularity is
now defined. It remains to calculate the u, v, and w components of velocity
induced at each of the specified control points due to a unit strength of the sin-
gularity under consideration. Formulae for these three perturbation velocity
components are given in the text for each of the four independent types of singu-
larities used in this report. In particular, the aerodynamic influence coefficients

associated with each elementary singularity may be calculated from a combination
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of the v and w components of velocity, with due consideration being taken of the
relative orientations of the panels involved.

Once the aerodynamic matrix has been formed and solved for the unknown
singularity strengths, the surface pressures, forc.s, and moments acting on
the wing-body combination can be calculated.

If the shape of the wing camber surface that will yield the minimum drag for
the wing-body combination under specified conditions of 1ift and pitching moment
is desired, a slightly different method is used to solve for the strengths of the
singularities. In this case, an expression for the drag of the complete configu-
ration is derived in terms of the unknown singularity strengths. The values of
the singularity strengths which will give the smallest value of drag consistent
with the constraints imposed by the lift and pitching moment are determined by
application qf the method of Lagrange multipliers to the system of equations so
formed. These values may then be used to calculate the optimum shape of the
camber surface, and the corresponding pressures, forces, and moments acting

on the configuration.

4.2 Calculation of Velocity Components — Surface Singularities

Derivation of the generalized potential function. — The linearized differential

equation for the velocity potential ¢ generated by a small perturbation of a steady
supersonic flow is given below, where B = \/M'2 - 1 and M is the free-stream

Mach number,

B% 0xx = 0yy + 0y, (1)
Differential equations of identical form also govern the behavior of the three
perturbation velocity components u, v, w in the flow. To extend the following
analysis to include the calculation of these velocity components in addition to the
potential, equation (1) will be rewritten in terms of an arbitrary variable .

B% Q. - Qgy + Q, (2)

12



A general solution to equation (2) is given in reference 8, based on Volterra's
solution of the two dimensional wave equation. This result is repeated helow,
and gives, in integral form, the value of £ at any point P due to a small per-

turbation of the flow originating on a surface S.

Qx,y, z) = 217 P [f w —~,') o ds
n 20
2WaX_[/(Q_Q) 3)

The integrals are to be evaluated on the surface S throughout the "domain of
dependence'’, T, of point P(x, y, z). The unprimed variable §2 denotes the value
of this variable on the same side of S as P, while the primed variable denotes
its value on the opposite side of S as P. ¢ is the particular solution of equation
(2) chosen by Volterra which vanishes, together with its derivative with respect
to the conormal v, everywhere on the surface of the Mach forecone from P.

The function ¢ is given below:

-1 x - &
By -m2 + @ - 2
It should be noted that o is the indefinite integral of the fundamental solu-

0 = cosh

(4)

tion of equation (2) representing a supersonic source in three dimensions.

The conormal to a surface S is defined to be a vector, the three components
of which are related to the components of the normal vector n to the surface as
follows:

v,=-8°n;,  Vy=ny,  Vg=ng 5)
V' is defined to be a vector having the opposite direction to v on S.

In the following analysis, the surface S is chosen to lie in an inclined plane
passing through the y axis. The equation of this plane is { = a§. The sketch
on the following page illustrates the conormal associated with this plane. Note

that the conormal to the Mach wave originating from the leading edge of the

surface S lies in the plane of that Mach wave.
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MACH WAVE

Z, A I 13
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—r— -_——
n :"3 v
0 2 SINGULARITY
/ SURFACE
|
n
e Y4 §=a¢
/ .
a - x &

In this example

20 30 Fl 2 a0 (1
[ — = = - e e
aw Y13 "Vsar Aony 3¢ * 13, ©)

Now ny = - sin @ = 2
L= - _ _ __a

V1 + a2
n, = cosa~—1_
. =
N1 + a2
2
Therefore :T(: = £a :—g' + ! ?1
V1 + a2 V1 + a2 ¢

a2 x-6)(@z -8
; R T R
Vi+ a2 Wix - £)2 - B2y - m)2 - B2@ - )2

(M)



Note also that an clementary area dS in the plane may be written

dS = d§ dn/cos «

N1+ a2 d¢ dn (8)

Consider now a semi-infinite triangular region in the planc { - u§, such

i

that the leading edge of the triangle has the projection ® = m§& in the £, n planc,
while the side edge lies in the §, '(; plane. The domain of dependence T of the
integrals in equation (3) is then the area on this oblique triangular region lying
upstream of its intersection with the Mach forecone from P, OQR in figure 2.

The equation of the curve QR is determined by substituting = a§ in the equation

for the Mach forecone from P:
2 2 2 2 2
x - ) =B%y - mM° + Bz - af) (9)
Thus, for a given 7, the points S and T on an elementary strip of width dn on
the surface have the coordinates S(§1, M, a§1) and T2, M, aéy)
where £; = 7n/m

2 2 2
ana gy =X=Bazly i 2B R (2 g2y - my? - g2
1 - B2 a? x - 8% a z)2

(10)
and the point Q has the coordinates Q(n3/m, Mg, a Ng/m)

m(x - B%my + az) 1\/(1—ﬁ%¥+nﬁMx - B2 + £2)

1 - Bz(a.2 + m2) (x - B (my + az))

where 73 =

(11)
Equation (3) may now be written:

N3
af 2 Q! T
Qx,y,2)=- 1+a af f a ,)cosh'1 x - & d¢
£, By -m2 - (z - a§)2

(x=-£)z=-af)

2 2
+2L‘n;—ax/ dﬂf Q- Qn (y-m*-(z-2ak) d¢
0 £ Vix - 62 - B2(y - M2 - B2z - a§)2

(12)

15
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(IN PLANE z=ax)

|
SURFACE SIDE EDGE
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o/

ELEMENTARY STRIP

IN REGION OF
INTEGRATION
a tan «
m cotA
B=V M -1
£ =n/n

1

x-Blaz 1-8%a2 5 2 9 9
€, " 1-B2a? [1_\/1_ (x-B%az? =BTy -A 2

"y - mix-glmy-Blaz) [1~‘/-[1_52(82%2;]&2_‘92”@Zzﬂ ]
x-8

1-g2(al vt 2oy -Blaz) |

FIGURE 2 GEOMETRICAL ORIENTATION OF INCLINED SINGULARITY SURFACE
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The integrals in equation (12) may now be evaluated, provided the expres-
sions (£ - Q') and (3Q/av + ¥Q'/av") are prescribed on S. It is most con-
venient to set them equal to a constant, or zero. Two choices of © will now he
described which will satisfy these conditions, and yield expressions for the
potential function representing either a surface distribution of sources in the
£ ,n plane, or a constant pressure jump across a lifting surface corresponding

to a constant distribution of vorticity in the plane & = ag .

Potential function for surface distribution of sources. —In equation (12),

© is set equal to the perturbation velocity potential ¢ on the upper surface of S.
The partial derivative 3¢ /av then represents the velocity component in the direc—‘
tion of the conormal to the upper surface of S. Similarly, a¢'/av' represents

the velocity component of the lower surface potential function ¢' in the direction

of the conormal to the lower surface of S.

Now
20 _ _B%a w0 1 0
[ o @ o5 @
w 1+ a2 2 1+ a2 ¢
2
1
. B u+ ——— w (13)
1+ a2 V1 + a2
Similarly

' 2

The sketch on the following page illustrates the geometrical orientation of
these velocity components.

It can be scen that if ¢' has the same sign as ¢, a discontinuity in the v
component of velocity will appear in the flow on the surface £ = a £ which in turn

implies surface discontinuities in the u and w velocity components. In fact, if

©' =¢, then u' ==u, w'=-w on the surface.

17



THE CONORMAL V AND
t 14 ‘ ALL VELOCITY COMPONENTS
LIE INf,g PLANE

/v' v ¢

The second term in equation (12) then vanishes, and

0 Q' _ 2

v ' /_“1 N a_z

where the bars denote the values of the velocity components on the surface .

(w + B2 av) (15)

If the quantity (?v- + 32 a 1_1) is constant, it can be taken outside the integral.
If, in addition, the partial derivative of 0 with respect to x is taken through the
double integral, which is a legitimate operation in this case, equation (12)

reduces to

_ _ M3 ré
w+ B2 aud d§
<P(X,Y, Z)Z_ T f dnf 2
0 g, Vx-62-B2(y -2 -2z - at)

(16)
For the special case a = 0, this expression reverts to the usual integral
form for the potential due to a surface distribution of sources in the £, 7 plane.

The integral will be evaluated in its most general form, however, as the resulting

18



functions will be used later in the derivation of the potential duce to o constint
pressure dillerence across the surface S.

Applying the integration formulace appearing in Appendix A, and simplifying,
. : . . . [ 2 2
the following result is obtiined, for the casc ﬁ Vao o™ < (subsonic

lending edge):

_RZ .2 _ . _ RZ ..
O, v, z) &L— (I -B%a%)mn - m(x - B az)

cosh™ dn
7 gt Bn”/(l ~BZaf M -y)2 s (2 -ax)?
wiB%au 2 - B2(y2
wi BTau { AR S | m(z - ax) Vx= - B=(y
Tr 1- Bz a2 y[(y - mx) - Bz aay - mz)] + (z - ux)z

X - B%my + az)

~R2 ,2 _ _ R2,
F (1-Ba7)y -mx - 7 ag) cosh™! :
1 - B% a2y W1 - B2(12 + m?) ﬁ\/(y—mx)z bz -ax)? - B4ay -mz)2

-_y

- cosh~1

Vi - B2 42 BVy2 | Zz}

(17)

29
It ﬁ V a~ +m~ =1 (sonic or supersonic leading edge), the inverse hyperbolic
cosine js replaced by the inverse cosine (see cquation 40).

The perturbation velocity components may now be obtained by differentiation.

2 _ g2 2, 2
aco —gw -+ @ a u! m(z - ax \/x - v o4oz-
u = {dt‘m ( ) ﬁ ( )

Ix (1 - B“ (l"‘ y[(y - mx) - ﬁ2 aay - mz)] + (z - ax)2

- g2 .
+ = o : cosh™1 )f 8 (my * az) }
V1 - B2 + m?) By - mx)7 4 (2 - ax)? - By - mz)>
_dp _-(w+B2au { 1 cosh-l — X (18)
3y m V1- B2 a2 B Y2 + 72
2 .
_ 1 cosh-! x - B (my 1az) }
N/l - BZ(a% 4+ m2) B (y -mx)% (2 - ax)? - g2 (y - mz)2

19



_— W (W + Qz a ﬁ) tan_l m(z - ax) \/x2 - ﬁﬂyz + z2)
3z (1 - B2a?) v - mx) - B2 afay - mz)] + (z - ax)2

2, g2
¥ B am cosh™1 x - B (my + az) } (18)
\/1 - B2(a2 + m?) ,BN/& - mx)2 + (z - aLx)2 - Bz(ay - mz)2
It should be noted that ¢ = xu + yv + zw. (19)

The results may be quickly verified by evaluating u and w on the surface
Z = ax.

Noting that

tan-1 m(z - ax) */xz - B2(y2 + 29
ylty - mx) - B%a@y - mz)] + @ - ax)?
(20)
=7 for z =ax, and 0 < y < mx
=0 for z =ax, and y < 0, y 2> mx
Then, for 0 < y < mx
- -w+B%au _ g2 ,2y _ g2
u=—m-é2—a2—u){a'n'+ m cosh~1 X1 B” a%) ﬁmy}
m(l - g% a% \/1—32(a2+m2) .3«/1_32a2 ly_mxl
_ W 2,4 2 _ @2 .2\ _ a2
—_Ww+Bfaw ) Bfam -1x(1-8%a% - B%my
m(1 - £ a) 1 8%6% ) BV1- BZ a2 |y - mx|
— - W 2 44
Therefore w + B2an = & *rB8%aw ., g2 .2, (21)

(1-BZa?)m
Thus the resulting flow satisfies the imposed bourdary conditions on the semi-

infinite triangular surface illustrated in figure 2. Off this surface, in the plane

z = ax, the quantity (@ + 32 aﬁ) = 0.

20



Two special cases of these results deserve attention, as they will be used

later in the numerical analysis. In the first, for a = 0, the velocity components

due to a surface distribution of sources in the x, y plane are simply obtained

from cquations (18):

w 1 -1 x - B2 my
uy = -—M | ———— cosh
1T V1 - B2 m2 ﬁ\/(mx—y)2+ 1 - 82 mz) 22
wm 1/m _ X - Qz my -1
v =<— ){*——' cosh-1 — - cosh
! g Vl—ﬁz m2 ﬁ\/(mx—y)2+(1—32m2) z2

o 2 _Rp2.,2 2
w _(_:Tlm) tap-1 M2 \/x Be(y® + z4)

m y2 + z2 - mxy

X

By + 2

(22)

In the second special case, the velocity components due to a line source along

the x axis will be derived. The term m w/m is taken as a constant (for m — o)

in the equations for the velocity components given by equation (22), and the limit

of the resulting expressions evaluated as m approaches zero. The result is given

below:
u, = - k cosh"1 R S —
By? + 22
k
vy = —L— Vx2 - B2(y2 + 22)
Vy2 4 52
kz [ 2 _ 8202 + 52
Wo = T————— Vx“ - B(y< + z%)
2
Ny2 & 22
where k = lim mﬂw = constant.

m—0

(23)

These velocity components will be used later to represent the flow surround-

ing a circular cone at zero incidence centered on the x axis.

function corresponding to this flow is:

21
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®, = k {x cosh™! ﬁ_—«/% W2 - B2(y? + 22)} (24)
y + 7

Potential function for constant pressure surface. —In equation (12), Q is

set equal to the perturbation velocity u on the upper surface of S. The desired
solution will have a constant discontinuity in u everywhere on 8, that is Au = u
- u' = constant. Before introducing this condition into equation (12), the de-
rivative of u and u' with respect to the conormal is investigated. Following the

same procedure used in deriving equation (6),

_1_1_: éa au
w 1+a23£ J1 23§

au' —Bz a au' 1 au'
= - — TF (25)

1
w 1+a.2 3¢ '\/1+a2 T

Summing these expressions, the following result is obtained

du iu' 1

9
3T+3V': z[ﬁzag—g(u‘u')+ac(u_u')]

1+ a

0,

since (u - u') is constant on the surface S. Therefore the first term in equation

(12) vanishes, and the equation reduces to:

an G -m+ @ -af® o,
0 g, Ve - % - B2y - M2 - B2z - a6)?
(26)

ux, y, z) =

| >
=‘|c

Jn‘g €y _ 8244 (x-2€) (z - ag)

Since u = 3¢ /ax, an expression for the potential function may be obtained by
integrating equation (26) with respect to x. Since the potential is zero everywhere
ahead of the envelope of Mach cones defined by the leading edge of the surface S,
the constant of integration is zero, and the potential function, in integral form,

.becomes:

22



n‘; €2 —ﬁzu \ (x-€&) (z-ak)
_ : _m2. _ a2
‘D(X, y, Z) = 4_; e—lz)f dn [ Q n) 1 (Z d‘g) dg
0 £ Vix - £2 - B2(y - m)2 - B2(z - a £)2

(27)
where Au has been replaced by —Ap/qu. Ap is the pressure difference across
the lifting surface S, and q_ is the dynamic pressure Y p, M2/2, where p_ is
the static pressure in the undisturbed flow. Equation (27) thus gives the potential
function corresponding to the oblique triangular region of constant lifting pressure
illustrated in figure 2.

Equation (27) breaks down naturally into two double integrals as follows:

2 3 €
O, ¥, 2) - ‘B—,f(éﬁ)/ dnf i
1 g, Vo -2 - B2y -m? - B2 - ag)?

€2

n
i _1(&)[ 3‘”’] (x - &) (2 - af) dE
TN [v-m2+ -2 8] V-2 825 -m2 - B2z -a 82
1

(28)
The integration with respect to § is carried out first, making use of the inte-
gration formulae in Appendix A. It should also be noted that the first integral is
identical to that in equation (16) for the surface distribution of sources. After

some simplification, the following result is obtained:

v cosh”™

dn
1 - B2 a2 BmV(1 - B2a2)(n -y)2+ (z - ax)>

(o]

n
2 3 2 2 2
P(x, ¥, z):;.B_a(éE)f —1 1 (1-fa)n -mx- " az)

k!
- 4%1 (qAP_)[ cosh™! et
=JJ, B@an - mz)2 + m2(n - )2

(1-82a2%1n -mx - B2 az)
V1 - g2 a2 BmV(1 - B2 a2) m - y)2 + (2 - ax)?

dn
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and combining terms

ag)[
_ -1 (Qp -1 Yy - mx
¥ xy,2) = (qm)/ cosh N

0 BV(@n - mz)2 + m2(n - y)2

2.2 2
BmV(1 - B2 22) (1 - )2 + (z - ax)2

By repeated application of the integration formulae in Appendix A, the inte-
gration with respect to 7 may be completed, after some lengthy computation,

giving the final result:

o, v, 2) = '—3(‘—‘13) «tan-l (- ax) Vx2 - B2(2 4 72)
o

4 T\% (y - mx) —Bz a(ay -mz)] + (z —ax)2
- B2
- =¥ — |av1 - B2(a2 + m2) cosh™? x - Bi(my + az)
a2 + m2

BV(mx - )2+ (ax-2)2 - BXay -mz)2

-1 (ay - mz) '\/xz - ﬁz(y2 + z2)

X(my + az) - y2 - z2

+ m tan

2 a2,.2. .2
+im2tmh'1JX B’ + )

- @2+ m2)¥1 - B2 a2 tanh-1 Vi1 - 8% a2)( 2 - B2 + 22)

x - B2 az
z 2.2, 2 -1 x - B%my + az)
t 2 m\/l—B (a“+m?) cosh
a’+m B(mx - y)? + (ax - 2)2 - B2(ay - mz)2
~ m tanh~! Vx2 -Bi(yz—r z2)
+ 1 [ 2 tap-1 B¥ - m2) Vx? - B2(y% + 22
a 2 2

Xx(my +az) -y~ -z

m( - ax) Vx2 - B2(y2 + z2)

- (3.2+m2)tan‘1 9
y[(y - mx) - B a(ay - mz)] + (z - ax)

5 (30)
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This equation is valid only if ﬁ\/az i m? <1 (subsonic leading edge). If
/3\/;12 + m? 21 (sonic or supersonic edge) the inverse hyperbolic cosine is
replaced by the inverse cosine (sec equation 40).

The velocity components may now be obtained by differentiating equation (30),

L v e w -
X ay ez

where u

The evaluation of these derivatives is rather lengthy; however, it can be
proved that u, v, w are merely the coefficients of x, y, z respectively in
the expression ©(x, y, z), given by equation (30). Thus

X, y, 2) = Xu + yv + zw (31

and u, v, w may be obtained from equation (30) by inspection (cf. equations 18
and 19).

The results may be verified by evaluating u on the surface z = ax. Sub-
stituting equation (20) into the first term of equation (30), then,

- _ _p-p
1q_ 4 q,,

for 0 < y <mx
=0 for y < 0, or y = mx,
Thus the horizontal component of velocity on the upper surface exactly equals
one quarter of the pressure difference between the lower and upper surfaces,
divided by ¢, . Since the horizontal component of velocity on the lower surface

u' is equal and opposite to u, the pressure coefficient on the lower surface must

also be equal and opposite to that on the upper. That is,

p -_—
C = = -2u
Pupper U (32)
] - -
=B - 20 - 2q

C
Plower U

The velocity components will now be written out for the special case a = 0,
in which the triangular region of constant pressure is located in the x, y plane.
Two terms in each of the u and w velocity component formulae require special

attention. The limits of these two terms as a goes to zero arc written out below:
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X

. 2 _Qp2.,2 2
lim {1 [mz tanh-1 \/x B4(ye + z<)
a-—=0j a

_B82a2)(x2 - B2(y2 + 22
- @2+ m?) l_ﬁzaztanh-ﬂ/(l B2 a2)(x2 - p2y2 + 12)

x - B2 az
2
-tz o B2(y2 + 22y (33)
2 + 22
limo 2% m? tap-1 (¥ - mz) k2 - B2(y2 + 52)
Qe

x(my + az) - (y2 + z2)

m(z - ax) Vx2 - B2(y2 + 22

- (@2 + m2) tan-1
( ) y[(y - mx) - 132 a(ay - mz)] + (z - ax)2

2
= - 55 k2 - 822 4 )

Y2+Z

(34)

The velocity components for this special case (a = o) may now be written:

3 Ap tan-1 M2 Vx2 - Bz(y2 + z2)

4T g, y2 + z2 - mxy
v. = Ap |1 tan~1 2Z Vx2 - B2(y? + 22 -z 2 Bz(yz 4 zz)
3 4m q,|m 2 + 22 - mxy y2 + 22
A 1 2 _ o -1 X - éz my
w3 = - h— 1 - ﬁ m COSh
AT e g0 Bmx - )2 + (1 - B2 m2) 2
-cosh™ —E—| - Yo iZ 242, 2 (35)

This expression for Wg, With z = 0, agrees with the downwash function
presented by other investigators for a triangular plate with uniform loading.

(See, for example, equation 32 of reference 8.)
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Classification of the velocity functions., — It is apparent from the preceding

analysis that certain functions appear repeatedly in the equations for the perturba-
tion velocity components and potential functions, equations (18), (22), (23), (30),

and (35). These functions are listed below:

- 2 _R2,,2 2
o1 gl M ax)sz B2 sty
y[(y -mx) - B a(ay - mz)]+ (z - ax)
F2 = 1 cosh™1 = ﬁz(my * 2z)
V1 - B2@a2 + m?) By - mx? + (z - ax)? - B2y - mz)>

F3 = tan-1 &Y = mzﬂxz - B2(y2 + 22)
x(my + az) - (y2 + z2)

F4 = (F3 - (1 + a2/m?) Fl) (m/a)
2 _Rp2(,2 . ,2
F5 = tanh™! JX -B)Ey +z7)
F6 = V1 - B2 a? tanh-1 V(1 - B2 a?) (x2 - B2(y2 + 72))
x - B2 az
F7 = (F5 - (1 + a2/m?) FG) (m/a) (36)

These functions may all be conveniently rewritten in terms of inverse cosines,

or inverse hyperbolic cosines, as follows:

Fl - 23X -1 y(y—mx)—ﬁ?a(ay—mzﬂ+(z—a.x)2

Iz - ax| \/[(z ~ax)2 + (1 —Bzaz)yz] [(y—mx)2 + (z —ax)2 - Bz(ay-mz)z]
F2 = 1 cosh™! x —ﬁzgmy * az)

\/1 - B2(a? + mz) B“/(y -mx)2 + (z - ax)2 - B2y - mz)?
F3 - DZz-ay o1 - X(my + az) + (y2 + z2)

oz - 231 V2 + 22 - m? + (@ - a2 - Bay - mz)?|
F4 = (F3 - (1 + a2/m?) Fl) (m/a)
F5 = cosh™1 —_

BIy? + 22
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2
o - a
F6 =1 -B2a2 cosh-l x - B° az

BV - ax)2 + (1 - B2 a2)y2

F7 = (F5 - (1 + a%/m? FG) (m'/a) (37

If a = 0, the limiting forms of F4 and F7 must be used. Referring to

equations (33) and (34),

F4 = my JXZ - ﬁ2(y2 + 22)

¥2 + 22

F7 = —7m_z_2 Vi - BZ(y2 4+ 42 (38)
y tz

The behavior of the functions F1 and F3 will now be examined. In the plane
of the singularity, z = ax, the function F1 jumps from the value of 7 y just above
the plane, to -7 just below, for all points behind the leading edge. The function
is continuous and zero everywhere in this plane ahead of the leading edge and out-
board of the side edge. The function F3 similarly exhibits a discontinuity of 2
in the plane z = (a/m)y for 0 < y < mx, and is continuous and zero elsewhere
in this plane. Both functions are asymmetric above and below their respective
planes of discontinuity.

It should be recalled that the seven functions listed above were derived for a
triangular surface having a subsonic leading edge, that is, the leading edge is
swept back inside the Mach cone from the origin, and for which Bz(a2 + m2) <1,
In this case, it can easily be verified that all of the functions go to zero for
X 2 BN/y_2+_z2 » which includes all points on or outside of the Mach cone.

For the case in which the leading edge of the triangular surface touches, or
extends outside the Mach cone from the origin (sonic or supersonic leading edge),

all functions are unaltered for points inside the Mach cone from the origin,

except F2, which becomes:

_ VXZ - Bz(yz + ZZ)

F2
x - By

for B2@a% + m? =1 (39)
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and

Fo - 1 cos~L x - B2(my + az)
’\/,32(;12 +m?2) - 1 B\/(y - mx)2 + (z - ax)2 - Bz(ay - rnz)2
for B2@% + m?) > 1 (40)

The functions also go to zero for points on or outside the Mach cone from the

origin, except in the region inside the envelope of Mach cones from the super-

sonic leading edge where the functions either go to zero, or take on constant

values. The geometry is illustrated by the section at x = constant.

I ¥

/"—‘\

y_B(2X+m7>('a Betnt)- )
(my+a2)+| mz- ay]\/BZ(_aZm_—

al4m?

leading edge,

(m+a VB 2alnd)-1 )

X
" Bt

In this region, inside the envelope of Mach cones from the supersonic

Fl=m for z 2 ax

= -1 for

F2 = u

zZ < ax (41)

(42)

\/ﬁz(az +
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In addition, F4 and F7 are unchanged, and F5 and F6 are zero. Thus an
unsymmetric two-dimensional flow region is defined in which the velocity com-

ponents are constant,

The perturbation velocity components may now be expressed very simply in

terms of these new functions. For example

Planar source distribution (a = 0)

u = - - m F2
w
vy = 7= (F2 - F5)
W
wy = o= Fl (44)

Line source located along x axis (@ = 0, m = 0)

u2 = -k Fb
Vz = k F4
Wy = k FT (45)

Oblique constant pressure lifting surface

___Ap
U.3 41TqmF1
A 1
vy = Mpqm T [a(1 -B2@2+ m2)) F2 + m (F3 + F7)]
_ -Bp m 2 2 2
w3—417,@100&2“[!)2 (1-,3(a +m))F2—F5+F4 (46)
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Visualization of velocity components. — The following figures depict the

three components of velocity corresponding to oblique, constant-pressure lifting
surfaces in supersonic flow. For the case a = 0 where the pressure discontinu-
ity is located in the x-y plane (figures 3 to 5), the velocity components are given
for triangular regions having subsonic, sonic, and supersonic leading edges.
The dominant effect of the vortex-like flow around the side edge of the triangles
is clearly visible, as is the narrow upwash field in the leading edge region of the
subsonic leading-edge wing,

For the nonplanar case, a = 0.2, (figures 6 and 7), the velocity components
are given only for subsonic and supersonic leading-edges. The flow disturbance
is now seen to be centered about the plane z = ax, and is no longer symmetrical
about the x-y plane. An additional discontinuity occurs in the v and w velocity
components in the plane z = (a/m)y (the plane through the x axis that just
touches the leading edge), which corresponds to a sheet of vorticity being shed
aft of the leading edge. It should also be noted that, for the supersonic leading-
edge case, the sidewash and downwash are no longer equal and opposite above
and below the plane of wing in the "two-dimensional region' forward of the Mach
cone from the apex.

The velocity field in a plane perpendicular to the free-stream direction
located one unit behind the apex of a subsonic leading edge, constant-pressure
delta wing is presented in figure 8. The vortex sheet trailing from points along
the leading edge can be seen to generate a circulatory type of flow on the suction
side of the wing, This circulation above the wing may be comparable to the
"ram's horn' vortex observed experimentally above the upper surface of highly

swept delta wings.
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4.3 Calculation of Velocity Components — Line Singularities

Derivation of potential equation. — Equation (1) may be rewritten in terms of

the cylindrical coordinates x, r, and 6 as follows:

B> Oy = Ppp + OL/T + wee/rz (47)
To solve this equation, the perturbed flow will be resolved into two components:

the axial component, defined by the axially symmetrical potential ¢, and the cross

component, defined by the potential ¢.. Place
© = @y + O (48)
Then, for the axially symmetric flow,
2 -
B ®ayy = Papp + Pa /T (49)

and for the cross flow,

2

2 _
B” 0 = Popy, T P, /T Gogy/T (50)

The potential functions for the axially symmetric flow and the cross flow will be

determined separately.

Potential function and velocity components for line sources. — The solution

to equation (49) is well known, and is given in reference 9 as follows:
€1
£(€) dé

0 Vx - &2 - g2 r2

Qq(x, T) = - (51)
where §; = x - B r, is the intersection of the Mach fore cone from P(x, r) with
the x axis.

For the case f(§) = ks = constant, equation (51) represents the potential due
to a line source of constant strength distributed along the positive x axis. The
solution of equation (51) for this case is given as:

@ = k(- x cosnl g T p22) 62)

It should be recalled that this same expression was derived earlier by taking the
limit of the generalized potential function for a surface distribution of sources

(equation 24),
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The velocity components corresponding to the constant line source may he

obtained by differentiating the potential function and arc listed below:

Olpa
& -1 X
ud_ax kScosh 8 r
W0 k
v, _Fa 8.2 g2 .2
r, Py = VX Ber
W0
v _17"a _
ea_r 36_0 (33)

The velocity components in the Cartesian coordinate system are given by equa-

tion (23).

Potential function and velocity components for line doublets. — The solution

to equation (50) is also given in reference 9 :

€1
Q. .x, r, 6) = cos 6 f m(§) (x - &) d§ 50
0 \/(x - €2 - B2 y2

For the case m(§) = kD = constant, equation (54) represents the potential result-
ing from a line doublet of constant strength distributed along the positive x axis.

The solution of equation (54) for this case yields:

2 2
_ B“ r cos 6 -1 X X ’ X
Oc = kD 5 cosh Br Br 32 rz -1 (55)

The velocity components corresponding to this case may also be obtained by dif-

ferentiation. The results are listed below:

a0 2
U = 9% kD B cos 6 32 e 1
v - 10, _ -k 92 cos 6 cosh-1 X 4 X X2 1
rc ar D 2 ﬁ r B r Bz rZ
¢ 2 2
17" ¢ B® cos 6 -1 X X X
V _ - —— = —k —-— -
6, r a D 2 cosh Br Br ﬁ2 2 1 (56)
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4.4 Formation of the Aerodynamic Matrix

Geometrical considerations. — Some description of the geometry of the

wing-body combination is deferred until section 5. In this section, only sufficient
geometrical description will be given to continue the development of the aerody-
namic theory.

Briefly, the wing and body geometry is specified with respect to an arbi-
trary coordinate system, or "defining axes' X, Y, Z, as illustrated in the
following sketch. The defining axes may be inclined at an angle of attack &  to

the free stream.

2 /_WING REFERENCE PLANE

/‘C 0
e
U

v
<

The body is restricted to have circular, or nearly circular, cross sections,
but may have arbitrary camber and incidence. The wing may have any planform
that can be approximated by straight-line segments, and can be mounted at any
height above or below the body axis. The effect of dihedral is not included. The
wing sections may have arbitrary camber, twist, incidence, and thickness

distributions.
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The "body axes' x, vy, 7z arc established by the gecometry definition program
so that the x axis passes through the centroids of the hody cross scctions at the
nosce and base, while the y uaxis remains parallel to the Y axis. The body coor-
dinate system is therefore related to the defining axes by a simple transformation
involving a translation of the body in the X-7 planc, followed by a rotation about
the Y axis through the angle & 5. For many configuriations, the wing and hody
can be specified most simply in terms of the body axes direetly.

Referring to the sketch, it can be seen that in general the x-y plane will be
inclined at an angle @ = oy - ap with respect to the [ree strecam. The compo-
nent of the free-stream velocity parallel to the x axis is U_ cos «, and the com-
ponent parallel to the z axis is U_ sin a. In the following analysis, it will be
assumed that « is sufficiently small so that cos & =~ 1, and sin & = . There-
fore, for all practical purposes the axial component of the free-stream veloeity
miay be sct equal to the free-stream velocity U_, while the eross component,
which represents the additional effects of an angle of attack, is sct equal to U, o.
This approximation is consistent with the underlying assumptions of linear theory,
and introduces considerable simplification into the analysis.

The transformed body is now approximated by an cquivalent body of revolu-
tion about the x axis. Each section of the equivalent body has the same cross-
sectional area as the original body, while the body camber is defined by the heights
of the centroids of the original sections above the x axis. The transformed wing
is defined to lie in a plane parallel to the x—y plane, located at an average height
N ahove or below that plane. The line of intersection of this planar wing and the
transformed bhody is calculated within the program.

Finally, the surfaces of the transformed wing and body are subdivided into a
large number of rectilincar panels. The leading and trailing cdges of these panels
may be swept forward or back in an arbitrary way, hut the side edges must he
constrained to lie in planes parallel to the x axis. To meet this latter require-
ment, each panel may be further subdivided into two or threc parts, to be de-

scribed later. The panels are defined hy the x, y, 2 coordinates of the four
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corner points. A typical panel arrangement on a wing-body comhination is illus-
trated in figure 1 (page 11).

A primed system of coordinates is now introduced, originating at a specified
corner point k of panel j. The x' axis is defined to be parallel to the x axis,
while the y' axis is defined to lie in the plane of the punel u4s in {igure 1. It can
be seen that, in general, the x'-y' plane is inclined at an angle 0 to the x-y
plane. It should be noted that the panel may also be inclined to an angle ozj =

dz'/dx' with respect to the x'-y' plane, as illustrated in the following sketch,

2! y

X

The panel corner point-numbering convention is shown on the sketch. The
leading edge lies between points 1 and 2, and the trailing edge between points 3
and 4. The projection of the leading edge in the x'-y' plane has the slope mjl’
while the projection of the trailing edge in the x%.y' plane has the slope mj 3"
Note that mjl = myy and myg = nij4. The side edge hetween points 1 and 3
always lies in the x'-z' plane, and the side edge between points 2 and 4 always
lies in a plane parallel to the x'-z' plane,

The coordinates of a point i (Xi, y{, zj) may be expressed in terms of the

primed system of coordinates originating at corner k of panel j as follows:
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X', =X, - X

ijk i jk

y'ijk = (y; - yjk) cos 6]. + (z; - ij) sin 6].

z‘ijk = (z; - ij) cos 6]. -y - yjk) sin Gj (67)
C; B
where cos BJ- R S sin ej - —1

VBi2 + Ci2

J ]

Jr.2 2
BJ + CJ

and Xj1 2j1 1 Xj1 ¥il 1
Bj =| %2 Zj2 1| Ci= %2 Y2l

In general, the point i will be located at the control point of panel i. Note that
& = 0 for all wing panels is a linearizing assumption.

Superposition of the velocity components for the surface singularities. — For-

mulae for the three velocity components u, v, w are given in section 4.2 for the
two types of surface singularities chosen: surface distributions of sources and
surface distributions of vortices. The velocity components are derived for the
clementary case in which the surface singularities are located on semi-infinite
triangular regions, and are expressed in terms of the coordinate system originat-
ing at the apex of this triangular region.

The velocity components induced by a distribution of singularities over a finite
panel may now be obtained by combining four such elementary solutions originating
at each of the four corner points of the panel, using the method of superposition.
The procedure is illustrated by the following sketch:

1 1

£

FINITE PANEL = (REGION 1 — REGION 2) © - (REGIGN 3 - REGION 4)



The effect of a semi-infinite strip of singularities having the same width as
the panel is obtained by subtracting the triangular region with origin at corner
point 2 from that originating at corner point 1. Both regions must have the same
leading-edge slope and constant singularity strengths. The singularity strength
everywhere outside this strip is now zero. If the semi-infinite strip correspond-
ing to the difference between the triangular regions originating at corner points
3 and 4 is nO\-v subtracted from the original strip, then it can be seen that the con-~
stant singularity strength will be limited to the area enclosed by the panel and
will be zero elsewhere. It is not necessary for the second strip to have the same
leading-edge slope as the first, but it must have equal strength.

In the method of aerodynamic influence coefficients, all the singularity dis-
tributions are defined to have unit strengths; consequently, the superposition of
the velocity components corresponding to the elementary surface singularities
may proceed directly. For example, the velocity components at the control point

of panel i due to a distribution of singularities on panel j may be written as follows:

Wi = 451 - 9452 T %3 * ij4

v‘ij = rijl - rij2 - rij3 + rij4

Wi T Cij1 T Sz T Cijs T Cija (58)
= 4 L] 1
where %Gk = P@'5 Bl e Ve 2
Tjjk = B S(a']., b5k €'ijk Y'ijks 2'ijk) (59)
Cijk = B D@, blyes s Y'ijir 25K
(z;3 - z37) cos 6, - (yiq - y:7) sin 6,
and  a'j= B tan aj = g —>—1 L8 il . (60)
%3 T %1
1 Xz - X.l
b'jk - B m: - Bl(vio - vi1) cosJB- + (lz- - zi1) sin Of-'kzl’ 2
jk [ j2 7o R PR j
(61)
X.4 - X.
1
] 13 k=3, 4

B[(y]-4 - ¥j3) cos Bj * (2j4 - 2y3) sin 6]-]
Al ', = x'.. / ’ ’ ’ .
80, & ijk ijk B where x ik, ¥ ijk, and z ijk are defined by

equation (57).



The functions P, S, and D in equation (59) are writlen out in [ull in Appendix

B for both types of surface singularities.

Calculation of the aerodynamic influence coefficients for surface singularities.

The velocity component that is both normal to the hody axis and in a plane which
is parallel to the body axis and perpendicular to each panel surface through its con-
trol point, is required. The magnitude of this normal velocity component induced
at control poiht i by the distribution of singularities of unit strength on panel j is

defined to be the aerodynamic influence coefficient a;;. An expression for the aero-

j.
dynamic influence coefficients may be derived by an examination of the projections
of the velocity components in a double-primed system of coordinates associated

with panel i, as illustrated in the following sketch:

CONTROL POINT i

z 0;-0]
A M
6 "
v! 1 PANEL
SURFACE
I+ u"
INFLUENCED =
PANEL i v X
A OBLIQUE VIEW A-A
INFLUENCING
PANEL |
'
y
>y
Then ajj = w'"jj = w'jj cos 6 - 9]-) - v'jj sin (6; - 6;) (62)

The other two components of velocity may be written:

"= yqt..
u ij u ij

v, =v' cos (6, -06)+ w'..
1) 1y 1 J 1)
where u', v', and w' are given by equation (58).

sin (9i - 9].) (63)
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Additional subscripts are used to classify the aerodynamic influence coeffi-
cients according to the location of the control point i on the wing or body, the
location of the influencing panel j, and the type of singularity the panel contains.
For example, the influence on wing panel i by a surface distribution of vorticity
on body panel j is denoted by aWBVij’ and the influence on body panel i by a
surface distr%bution of sources on wing panel j is denoted by aBWSij'

Certain special cases will now be considered so that the formulation of the

aerodynamic influence coefficients can be completed.

Multiple part panels: There are certain areas on the wing and body where
the panels cannot be represented by a single planar region in which both side edges
lie in planes parallel to, or coincident with, xLz' plane. These areas may occur
at wing tips, along wing-body intersections, and on the surfaces of opening or
closing bodies. In these areas, the panels must be further subdivided into two
or three parts, each part of which meets the side-edge requirement, as illus-
trated below. It should be noted that a triangular part is considered to have a

side edge of zero length.

STREAMWISE SIDE EDGE
OF ZERO LENGTH

<+

PANEL WITH OBLIQUE PART 1 PART 2
SIDE EDGE BOTH PARTS HAVE STREAMWISE SIDE EDGES

In case a multiple part panel is an influencing panel, the velocity components

induced by each of the parts at a given control point are calculated separately, and

the total contribution determined by adding these individual components together.

The influence coefficient is then formed from these velocity components as before. —

If the influenced panel is a multiple part panel, the velocity components and



influence coefficient are calculated at a single control point representing the com-

bined arcas.

Panels having negative slopes:  The formulac for the velocily components
have been presented only for the casc in which the semi-infinite triangular region
containing the singularities has a positive leading-edge slope (mjk 2 0). Thesc
formulaec may be extended to the case in which the region has a negative leading -
edge slope by applying a slight variation in the superposition procedure used to

calculate the effect of a [inite panel as sketched.

SUPERPOSITION OF TWO
REGIONS HAVING NEGATIVE
SLOPES

Y

vl'\
\ \
< ,
*X1 xz
STRIP HAVING SUPERPOSITION OF TWO REGIONS
NEGATIVE LEADING HAVING POSITIVE SLOPES IN
EDGE SLOPE REVERSED AXJS SYSTEM

The influence of a semi-infinite strip of constant pressure at a given point i
may be calculated by taking the difference of the influences of the two semi-infinite
triangular regions of negative slope having vertices at corners 1 and 2, as before.
However, this case is calculated in an equivalent manner by taking the differ-
ence between the influences of the two semi-infinite triangular regions having
positive leading-edge slopes as shown in the right part of the sketch, where
the order of subtraction and the direction of the y' axes from the corner points

must be reversed. The velocity components are still given by the formulac of
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equation (33), with the following modifications to the terms qijk’ Tk and

CIJ‘\

dije = 2P @5 by 8oy e 25

ik = B S@TED G Epo Ry e 2

Ciy = B DEYED £l Y ik 2'ijk) (64)
where + is for mik 20
and - is for mjk < 0

Panel symmetry effects: For configurations having panels located symmetri-
cally on the right and left side of the x-z plane, it is possible to introduce consid-
erable simplification into the computer program by calculating these symmetrical
panels in pairs. The formulae for the velocity components in the double primed
system of coordinates associated with panel i have been given by equations (62)
and (63). If panel i has an image panel i associated with it, located on the oppo-
site side of the x-z plane, the velocity components in the double primed system

of this image panel may be written:

w”ij w‘ij cos (6; + BJ.) + v‘ij sin (6; + 9].)

I

;,n

i W'ij sin (E)i + ej) - V’ij cos (B, + ej) (65)

The sketch on the following page illustrates the geometrical relationship be-
tween the panel i and its image panel i, and the location of the influencing panel

It can easily be seen that the velocity components for both cases can be

expressed by the single pair of formulae as follows:

g
Il

ij w'ij cos (8i + Gj) + V'ij sin (8i + 6]-)

<—
I

i W‘ij sin (91 + ej) + V'ij cos (B; * 9].) (66)



provided that the y'ijk and z'ijk coordinates used in equations (59) or (64) are

replaced by

1 - - ; .
Y'iik ( + Yy yjk) cos Sj + (24 ij) sin GJ
| N
Z'ijk = (z; - zjk) cos GJ. - (#y; -y sin Gj (67)

where the upper sign is used for i and j on the same side of the x-y plane
and the lower sign is used for i and j on the opposite side of the x-y plane

(image panel i), in both of the above equations.

=h

IMAGE PANEL T PANEL i

PLANE OF REFLECTION == Z‘
(x-z PLANE)

0 |
y
INFLUENCING \
IPANEL] I
0
e -¥im, Y-y e

Calculation of the aerodynamic influence coefficients for line singularities, —

The line singularities used to represent the effects of the body thickness,
camber, and incidence are located along the positive x axis, The component of

velocity induced by these singularities which is normal to the x axis and in a
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plane parallel to this axis and perpendicular to the surface at a control point

is required. The magnitude of this velocity component induced at control point
th

i by the k= singularity of unit strength is defined to be the aerodynamic in-

fluence coefficient a, The following sketch illustrates the geometry for a

Kk
control point on the surface of the body and for a control point on an arbitrary

panel.

38'33'2%%5?&”2 ON CONTROL POINT ON ARBITRARY (WING OR BODY) PANEL

On the surface of the body, 8; is given by the angular position of point i,
measured from the x-z plane. On wing (or body) panels 6; is given by the in-
clination of the x'"—y'" plane to the x-y plane as before.

On the surface of the body,

A, =V
On the surface of a panel,

ajk = vrik cos (6; + 6r) - Veik sin (6; + 64) (69)

where

Yi
6 = tan'l —
A
i ZAi

<
1

2
(Xi - Xg) -
r B — —‘1 for line sources, or
ik (B ;)

9 :
:_ﬁ cos 6; cosh-1 Xi'xk+xi“xk\/&i'xk)2_l
2 . .

for line doublets,
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vg, = 0  for line sources, or (70)
) B2 cos 8 1 KT X H‘Xk\/(?i'xk)z
= - —————— | cosh - -1
2 B ri By (B ri)?
for line doublets.
and r; = Yiz + Z12

x coordinate of the origin of the k™2 fine singularity.

X
k
The aerodynamic influence coefficients induced by the line singularities are
also classified by the use of subscripts in a manner similar to that used for the
surface singularities. For example, the influence on wing panel i by the kth line
source is denoted by AWBS;)* and the influence on body control point i by the kth
Ii i .
ine doublet is denoted by ABBD;)

Resultant normal velocity at a control point. — The resultant normal velocity

at control point i may now be obtained by addition of the normal velocities due
to the local cross flow to those induced by the various singularities. The local
cross-flow velocity normal to the surface, nondimensionalized by the free-
stream velocity U, , is a cos @ i On the body, the local angle of attack is
assumed to be the difference between the angle of attack, a , and the slope of
the body camber line.

The resultant normal velocity on body panel i may be expressed as follows:

dz
C wVv
nB- =la - —d; cos Oi + nBBSi + nBBDi + nBBVi + nB i + nBWSi (71)

K
where "BBS; ~ *BBS;, Ty (due to body line sources)
K
nBBDi = k=i aBBDik TDk (due to body line doublets)
NB
11}3,]3\/i = Z aBBVij ij (due t.o ‘surface distribution of
j=1 vorticity on body)
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npwv. = Z aBWVi~ Pw . (due'to surfacg distribution of
=1 U vorticity on wing)
N
A\
nBws; = z aBWSI o, (due to surfaqe distribution of
i=1 U sources on wing)

As indicated above, the normal velocities induced by the various singularities

Nw

may be expressed as the sum of the products of the influence coefficients with

their respective

singularity strengths.

scribed previously, and the singularity strengths are defined below:

=
~
[

I

el
s}
|

For the summation limits above, there are K < 50 line sources and doublets,

NB < 100 body p

used may be cho

Likewise, the resultant normal velocity on wing panel i may be written:

nwi:a+nWB

where nWBSi = Z aWBSIk (due to body line sources)
K
"WBD; Z_: AWBD; Tp (due to body line doublets)
Np
nWBVi J:Zl aWBVij PB] g(i)lﬁigtiu;‘;abcsdiistribution of

= strength of body line source k

strength of body line doublet k

= pressure difference across body panel j

pressure difference across wing panel j

dzT
e thickness slope of wing panel j
J

anels, and NW < 100 wing panels.

sen arbitrarily for each problem.

s; " "wBD, T "wBV, T "wwv; © "wws;
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The number of singularities

(72)



Dwwv. = z AWwV.. Pw. (due po‘surface. distribution of
=1 1) ] vorticity on wing)
Nw
nWWSi = Z aWWSij ar. (due to surface distribution of
j=1 sources on wing)

Note that, by definition, 6; = ej = 0 on all wing panels.

Boundary conditions. — The boundary conditions equate the local flow direc-~

tion to the slope of the surface at the control points, where the local flow direction
is defined as the ratio of the resultant normal velocity to the axial velocity. For

example, the boundary condition at control point i on the wing may be expressed:

dz
= (— 3
o - (%)

n
1+ uBi dx i

The resultant normal velocities ny. and ny . are defined by equations (71)
Bj i

and on the body,

and (72), respectively. The resultant axial velocity, expressed as a fraction of
the free-stream velocity, is assumed to be unity on the wing. On the body, how-

ever, it is customary to include the axial velocity perturbations due to the

line sources and doublets. Correspondingly

YB; ~ UBBS; * UBBD; (75)
All other axial velocity perturbations are assumed to be small and are neglected.
The boundary conditions may be used to determine the strengths of the vari-
ous singularities representing the wing-body combination. In this report, the
body geometry and wing thickness distribution and planform are always specified
in advance. The wing camber and twist distribution either may be given, or will
be determined by specifying the lifting pressure distribution or minimum drag
condition. As a result, the boundary conditions are most easily satisfied by

solving equations (73) and (74) in three steps.
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In the first step, the boundary conditions on the wing are divided into two
parts, one associated with the lifting effects, the other with the thickness effects.

The surface slope of the wing may be expressed as follows:

dz dz '
(&), - (&), + (Tf) as)
i i i

where the upper sign refers to the upper surface, and the lower to the lower sur-

face. Substituting equations (76) and (72) into equation (73)

dz dz
C
(dx) * (dx T @ + nywgs, * PweDp; T "wBV; * "wwv; T TWws; )
1
Nw
dz dz
T T

= ——— = 4+ —
Now  Nyys; le “wws; (d")j <dx )i (78)
since aWWSij =x1 fori=j

0 fori #j

li

Thus, it can be seen that the given slope of the thickness distribution at con-
trol point i, (dzT/dx)i, is in fact the desired strength of the surface source dis-
tribution on wing panel i, and satisfies exactly the wing thickness boundary
condition on both surfaces. Equation (77) may now be expressed in terms of the

slope of the wing camber surface alone, as follows:

dz
e\ .
<dx)i @ * nwps. * PweD; T "WBV; * "wwv, (79)

The various normal velocity components are written out in terms of the aerody-
namic influence coefficients following equation (72).

In the second step, the strengths of the line sources and doublets are deter-
mined that completely satisfy the given boundary conditions on the body, assuming
no interference effects from the wing. For this step, equation (74) is written as
follows:

g£(1+u )+d—ru =a—£i-z—ccos9-+n +n

* "BV, © "BWY, * PBws;  (80)
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This equation is now broken down into three parts so that the unknown singularity

strengths, T, and TD , can be determined independently.

k k
For the line sources,
dr
- 1+u =n 81
<dx)i ( BBS;) ~ "BBS; (81)
For the line doublets,
dr ~ dzg

The remainder of equation (80) then expresses the condition that the resultant
normal velocity components on the body due to the wing must be canceled by the

distribution of vorticity on the body panels, that is,

n (83)

BBV; - ~ ®BwWv; © "BwWs,

The various normal velocity components appearing in equations (80), (81),
(82), and (83) are written out in terms of the aerodynamic influence coefficients
following equation (71). The third step is to solve equations (83) and (79) simul-
taneously to yield the pressure differences across the wing and body panels that
satisfy the remaining boundary conditions on the wing, once the strengths of the

line sources and doublets on the axis are determined from equations (81) and (82).

Determination of line sources and doublets. — The strengths of the body line

sources may be determined from equation (81). Writing this equation out in terms

of the aerodynamic influence coefficients:

dr K K
(ai 1+ kZ=1 UBBSy, k|~ kgl 28BSy, Tk

& dr
< ) Z [aBBS - <&)i UBBS;, ]Tk (84)

or
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This equation is solved for the source strengths T, either by inverting the

k
matrix enclosed in the square brackets and multiplying the inverse by (dr/dx)i,
or by using the classical approach first proposed by von Karman and Moore

(reference 10). To conserve storage on the digital computer, the latter method

has been used in the computer program. The method is outlined below:

%4

(.1, i-)  CONTROL POINT i

(5,1

\ ORIGIN OF kM LINE SOURCE

Xk =%ia1~Plicy

The body, considered to be made up of a series of truncated cones, is

defined by the radius at K stations along its length. At station i, the slope is

dr o T O |
()3
X1 ¥ T XA
For the first segment,

dr) _ a (% u T
dx/; | BBS11 " \dx/; BBS11j "1
dr
dx 1

Ir
o _{dr
BBS;; <dx>1 “BBS,,

1

For the second segment,

(d—r->—a -(d—r>u T, + |a _g_r_u T
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() [ - (2) e )
dx j, ~ | "BBSy; " \dx ), "BBSy; | 1
L—

In general, for the ith segment

dr i-l < dr >
— - a -\ — !l u T
(dx)i kzz:l BBSik dx : BBSik k

So

S (I )
BBS;; dx ); BBS;;
h
In this analysis, it should be noted that the kt line source has its origin at

the distance x = x._1 - B rp_1 from the nose of the body.
The aerodynamic influence coefficient, aBBS-k’ is given by equation (69).
i

The axial velocity component, uBBSik’ is given below:

X, - X
-1 i k
u = - cosh™" —/—— 87
BBS;i B r; (87)
The strengths of the body doublets may be determined from equation (82),
since in terms of the aerodynamic influence coefficients,
K K d
dr Z,
(d_x)i kzl “BBDy, Dy ~ kzl ®BBD;, D * (a T > cos 6; (88)
= = 1

Now both uBBDik and aBBDik contain cos 6i internally (see equations (56) and

(69)); consequently, cos 8, is eliminated from equation (88)
! — .
by placing u BBDjk uBBDik/COS 61

and a‘BBDik = aBBDik/COS 6;
The result may be written as follows:
dz K
(Of - ﬁ)l = - 1§1 a'BBD;, - (%i)i uw'BBDy, | Tpy (89)
Again, this equation can be solved for TDk by inverting the matrix inside
the square brackets and multiplying by the local angle of attack (@ - dz, /dx)i.

However, it is solved in a similar fashion to the source equation (84).
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Following the same procedure as before, the final result is obtained:

( dzc> id dr T
o - |+ a' -l o D
dx kzl BBD;, (dx)i BBDy, | Tk

™o~ - ‘ dary . ©0
“BBDji ~ \dx ), Y'BBD;;
Zo, ~ ZC'_
Note that dz, ) = —1
ax /. BT %
1

The aerodynamic influence coefficient, a ., 1s given in equation (69) (doublet
BBDj

form). The axial velocity component, uBBD-k' is given below:
i

\ﬁi - xk)z
uBBDik = B cos 6, —5 5 -1 (91)
B ry

Calculation of lift distribution on the wing. — As stated earlier, equations

(79) and (83) may now be solved for the magnitudes of the pressure differences
across the wing and body panels required to satisfy the remaining boundary con-

ditions. On the wing,

dz
c

n + n =\7—/] -a -n -n 92
WBV; T PWWV; (dx )i WBS; ~ "WBD; (92)

where the last two terms represent the normal velocity on the wing due to the

body line sources and doublets. To simplify the following analysis, these two

terms are combined as follows:
K K

DwB; = PwBs; © "WBD; T 1;—;1 AWBS;, Tk kz SWBD;, Dy (93)
On the body, N

W
ngpv; * PBWV; T T "BWS; T T Z aBws;; 4Ty (94)

=1
The last term represents the normal velocity on the body resulting from the wing

sources.
Equation (94) is the general expression for the normal velocity on the ith body

panel control point. There are Ng = 100 such equations. Similarly, equation
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(92) is the general expression for the normal velocity at the ith wing panel control
point, resulting in another Ny; < 100 equations. This combined system of Npg +
Nw equations is sufficient to determine the Ng values of ij, and the Ny values

of Pw.- For example, the equations may be written out as follows:
J

Np Ny
< *BBVy; - PBy 7 Z BWVy; - Pwy T T PBWS,
=1 =1
Np Nw
BBV, . PB; * 2. PBWV, + PW, = - "BWS
=) 2 g 2 j 2
Ng Nw
2BBVy .-PBj 7 Z BBWVY . ‘PwW; = - nBWSN
a - P * Aw - Py, - Ze) - - “wB
j=1 WBVy; By =1 WVij j <dx . 1
NB %’V (dzc>
. p <+ - = _— - a -
= a'vazj B; = a'WWVZJ pwj dx /, nWBz
N N
B w
a + Z = &z -a -n (95)
WBV PB. o Aywywy o Pw dx WB
=1 wi 3 =1 Ny Ny W

This system of equations is more simply expressed in matrix form as shown

on the next page.
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s, -/ r y
3BBV;; BBVyz © ¢ "‘BBVmB | aBWv;; ®BWVy, - - - ‘Bwvmw PB, T - BBWS,
a a
BBV,, “BBV,, : *swvon, || PB2 - PBWS,
agBvV I P
Np! | BNB - "BwsN
—— — — —— ——— — ——— o — — - — _ B
AWBY | & L P D L p
11 Iawwv11 1 =)o nwp,
AWBV,, | Py (d‘c
2 -a -
| axl & “PwBy
|
p
8WBV. EEEE awwv w de
- — L 4 . wJ

(96)

The matrix of aerodynamic influence coefficients is normally referred to as
the aerodynamic matrix. This matrix can be conveniently partitioned into four
parts, as indicated, one giving the influence of the body on the body [ABB] , the
next giving the influence of the body on the wing [AWB] , the next giving the in-
fluence of the wing on the body [ABW] , and the last giving the influence of the

wing on the wing [AWW] In terms of these submatrices, equation (96) becomes

(28] [ABw] | ("B - DBWS
=4d (97)
[Aws] [Aww] | | Pw 529 - o - nyp

This matrix equation may now be solved for ‘pB} and ‘ pwl as though it

were a system of two linear algebraic equations, as indicated below:

[ABB] IPB] + [Apw] {pw‘ - -[ nBWS\
Bws ] 'pB] + [Aww] [pW] = —dz—)f— “o - nWBl (98)



The first equation gives:

‘ pB‘ - - [aps]™ {'“Bws] + [apw] {PW” (99)

Substituting this into the second equation,

[[Aww] - [Aws [ABB]_I [ABWH |pw| = {[AWB] [ABB] ! {“Bws‘

+ 1<
dx

-«

- 'wB
which yields the lift distribution on the wing, provided the slope of the camber

surface and angle of attack are specified:

[pW} B [AR]_l‘[AWB] [ABB]_I l“Bwsl * |d§—,f - o - “WBl } (100)

- _ -1
where [AR] = I:[AWW] [AWB] [ABB] [ABW]:I (101)
is referred to as the "reduced'' aerodynamic matrix.
The pressure difference across the body panels, ‘ pBl, may now be deter-

mined from equation (99). This completes the determination of all the singularity

strengths for a wing-body combination of given geometry.

4.5 Calculation of Pressures, Forces, and Moments

Pressure coefficients. — The pressure coefficients on the body resulting

from line sources and doublets are calculated separately from those on the wing
and body panels. The combined pressure coefficient on the body in the presence
of the wing is the sum of these two calculations.

The pressure coefficients on the body resulting from line sources and doublets

are calculated by the following formula:
pBl - pm

2 2 2 2
C. =——"=_2uy +B%up.” -v - 102
pBi q, B B Bj rBi VBBi (102)
K K
here u = u T, + u T
where tp, Z BBSj, 'k Z BBD;, ‘D
k=1 k=1
K K
v = v T, + v
TR, kzzl TBBS; K k; rBBDj  k
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3 e 3 ;
"8pps; K 6pBD;, Pk

ve
Bl k:l k-_:l

X: - Xk
and u = - cosh'1 S
BBSiy B

(x; - %)°

i~ 7k

uBBDik = B cos 9i —3_2:-5_ -1
1

The remaining coefficients are defined by equation (70).

The pressure coefficients on the body panels resulting from surface distribu-

tions of singularities on the body and wing are given by:

C = -2up *+ 2uz—vz—w2 103
PB; B, * F7up,” " VB, Bj (103)

where up,

=u +u + u
; BBV; * UBWV; T UBWS;

Nf
= D Uppy. P,
"BBV; ~ & "BBVj; "B

St

[1422

u u
BWY; & BWY Pw;

Nw
ugws; Z Upws;.: 4T
i -1 ij j

and VB, = VBBV; * VBWV; * VBWS;
NB
vpv, - & VBBV °°° 6 - ¥BBy, Sin &) Pg
i = ij ij j
Nw
VBWV; 21 VBwy;; €08 9 - WBWV;; St 8;) Pw;
J:
Ny
VBWSI = zl (VBWSI cos 6, - wpws,. Sin 6]) aT
J'__
and “B, T VBBV, " ¥BWV, " VBWS
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NB
WBBVi: Zl (WBBVij cos Gj + VBBVij sin Bj) ij
J:

MZ

WBWVi: (WBWVi]- cos Bj + VBWVi]_ sin Gj) ij

=1

S
Il

ez

—
i
=

\VBW81: (\«VBWSIJ cos 6] + VBWSij sin BJ) aTj
The various velocity coefficients are given by equation (58), selected accord-
ing to the type of singularity under consideration.
Finally, the pressure coefficients on the wing panels are calculated in a single

step by the use of the following formula:

. 2 2 2 2
pri = -2 uwi + B uw; VW, ww; (104)
where Uy, T UWBS; T YWBD; T UwBV; * UWWV; * UWWS;
K
UwBS; " 1;1 UWBSjKk Tk

u = ﬁ u T
WBDi ] WBDik D

and vy - Vwss; " YwBp; T YwBv; T Ywwv; T Ywws;

sin 6, + v
Ai 9s.

cos 8y ) Ty
ik 1
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Nw
vwws; = 2 (Gwws,; €05 6 - Wwws;, sin 6) o
i -1 ij 1) J ]
YW, = Wwps. © "wsD; * YwaBv; T Ywwv; T Ywws;
ZK
W = v cos 8, -v sin 68, ) T
WBS; r Ay T V0 A Tk
b k=l Sk ! Sik !

K
w = v cos 6, -v sin 8 T
WBD; kz=1 ( "Dik Ar T Py a) "oy

WWBV = Z (WWBV cos 9] + VWBV.:. sin 6]) pB
i =1 ij 1] )

Ny

WWWVi = zl (WWWVij cos 6]. + VWWVij sin Gj) pwj
]:

Nw
w = (w. cos 8. + v sin 6,) o .
WWS; =) WWSi]- j WWSiJ- j Tj
The computer program is designed so that the user has the option of calculating
the pressure coefficients either by the "nonlinear" formulae, equations (102)

through (104), or by the usual linear formula:

Cp, = - 21 (105)

which consists merely of the first term of the preceding pressure coefficient

equations.
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Forces and moments on the isolated body. — The lift, drag, and pitching

moment of the body due to the line sources and doublets alone are calculated
neglecting any interference effects from the wing. Such interference terms
are added later. The body is considered to be approximated by K truncated
cones. The forces and moments on a body segment having an angular width AOJ-,

and located between x; and x;_1, will first be determined.

The lift of this segment is

AL '
<T> Z[Cij (Xi - Xi_l) (I'i + I‘i_l) CcOs GJ]ABJ/Z (106)
1)
The pressure drag is given by
AD 2 2
<T) = Cpp (1" - 7il1 ) B6;/2 (107)

ij ]
The notation is the same as that illustrated in the sketch preceding equation (85),
and CpB is given by equation (102) at J points around the circumference.
j
The total lift, pressure drag, and pitching moment may now be obtained by

summing the segment contributions. For example

Ly 1 & AL
Ly “asw w2 & \a,
W PW o i1 ij
e .2B__ 1 ZJ > (A_D>
D = -
B 4 Sw i 1\
M J K
B 1 AD
CMB = - = n Z Z (q-) (ri cos 6] - z)
qSyc Sye =1 i1 ij

. (ATL)-. [Xl—%—xl—‘l - i] (108)
ij

where the moments are computed about the point ()-c, 5), c is a reference chord,
and Syy is the reference wing area. The forces and moments are computed for

the half-body only.
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Forces and moments on the wing. — The forces and moments acting on the

wing are determined by calculation of the forces and moments acting on the upper
surface of the wing and adding them to those acting on the lower surface. The
pressure coefficient on a wing panel is given by equation (104). The normal
force on the surface of a panel is the product of the dynamic pressure, the

pressure coefficient and the panel area

Fi = q Cp, 4 (109)

Resolution of this force into components normal and parallel to the free-stream

direction yields

dz
D; = Fy (5;) -« (110)
1

where dz = (EE + d—zl

is the slope of the panel with respect to the x-y plane. The upper sign refers
to the upper surface, the lower to the lower surface.

The pitching moment with respect to a point (1_(, 0, 2) is:

M; = - Li (x; - %) + Dj (z; - 2) (111)

The sum of the forces and moments on the upper and lower surfaces, divided
by the product of the dynamic pressure and the reference wing area, results in the

lift, drag, and pitching moment coefficients for the wing:

Ny
CL Z (Ly, + LL)
W =
Ny
__1 <
C = D + D 112
DW SW ‘: ( U. Li) ( )

N

1
CMy, B i" My, + Mp,)
q SW C i=1 1 1

where the subscripts U and L refer to the upper and lower surfaces.
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Interference forces and moments on body panels. — The forces and moments

on the body panels are similarly calculated. The normal force on the panel sur-
face is given by equation (109). The interference lift and drag may now be cal-

culated, making due allowance for the inclination of the panel,

H

L

dz' .
D; = Fy [(fx—)l - o cos 9{' (113)

where dz'/dx is the slope of the panel with respect to the primed system of

- Fj cos Gi

[

coordinates having its origin in the foremost panel corner, as illustrated in fig-
ure 1 (page11). As before, the pitching moment is given by equation (111).

The lift, drag, and pitching moment coefficients are given by equation

(112), omitting the terms with subscript L.

Forces and moments on wing-body combination. — The resultant lift, drag,

and pitching moment coefficients may now be obtained by adding the isolated body
coefficients, equation (108), to the wing coefficients and the body interference
coefficients, both from equation (112). This completes the determination of

the forces and moments on the wing-body combination at a given angle of attack.

4.6 Applications to Specific Problems

The method of aerodynamic influence coetficients can be applied to a wide
variety of aerodynamic problems involving supersonic flows about wing-body
combinations. The generality of the method is primarily due to the matrix for-
mulation of the problem, which introduces considerable simplification into the
algebraic manipulations involved. For example, either the direct problem of
determining the pressures, forces, and moments on configurations of given
geometry, or the inverse problem of determining the geometry which will result
in certain desired aerodynamic properties can be solved with equal ease. In
particular, the wing camber and twist required to minimize the drag of a wing-

body combhination under given constraints of lift,or lift and pitching moment,may

67



be determined by additional straightforward operations on the acrodynamic matrix.

The various applications will be outlined in the following secctions.

Direct problems. — The determination of the acrodynamic pressures, forces,

and moments acting on a wing-body combination of given geometry has heen outlined
in section 4.5. Briefly, the problem is solved in three steps, beginning with the
analysis of the isolated body, followed by the analysis of the wing in the presence

of the body, and completed by calculation of the interference effects of the wing

on the body. This technique is fundamental to the solution of both direct and
inverse problems, once the geometry of the configuration has been defined. The
specific direct problems that can be treated with this method are outlined below.

Examples giving results for selected cases are presented in section 4.7.

Body alone: Given a body having circular, or nearly circular cross sections,
and having arbitrary camber and angle of attack, determine the pressures, forces,

and moments.

Wing alone: Given a wing planform that can be approximated by a series of
straight line segments, and having arbitrary angle of attack, camber, twist, and
thickness distributions; determine the pressures, forces, and moments. This
problem can be solved at a number of angles of attack to give the theoretical lift
and moment curves and the drag polar,

Special cases include the calculation of plane wings at incidence, non-lifting
thick wings, and the effect of control surface deflections.

Wing-body combinations: All cases described above may be calculated for
the combined wing and body, taking into account all the interference effects of one
on the other. In particular, the effects of symmetrical body contouring may be

included in the analysis.

Inverse problems. — Inverse problems fall into two categories. The first

category includes the determination of the wing camber and twist distribution
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required to support a given lift distribution. In the sccond category, the wing
camber and twist are found that will satisfy the condition of minimum drug under
given constraints of lift and pitching moment. These two categories are described

in detail below.

Given lift distribution: The slope of the camber surface that will support a

given lift distribution, Py may be determined by inverting equation (100) thus:

;d:_f} &+ {nWB} + [Ar] {pw} - [Aws] [ABa] '1{nwss} (114)

where ]’HWB} is the normal velocity distribution induced on the wing by the

body line sources and doublets, [AR] is the r;:*dgced aerodynamic matrix,
given by equation (101), and [AWB] [ABB] { nWBS} is the normal
velocity component induced on the wing by the cancellation of the normal velocity
components induced by the wing-thickness distribution on the body.

A special case results when the lift distribution on the wing is constant. In
this case, however, if additional pressures are introduced by the wing and body
thickness distributions, or body camber and angle of attack effects, then the
pressure distributions on the upper and lower surfaces of the wing will not be
constant.

Minimum drag for given lift and pitching moment: The wing camber and
twist required to minimize the drag of a wing-body combination under given
constraints of lift and pitching moment may be determined by applying the calculus
of variations to the drag equation. The problem is formulated by defining a
function F in terms of the NW varigbles pWi and the two auxiliary variables, or
Lagrange multipliers, ) 1 and 9 The function F is chosen so it will be

equal to the drag when the wing lift and pitching moment are equal to their con-

strained values L and M, respectively. One such function is

F=D+X;(L-L)+ Xy M - M) (115)
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where L

“'M
2
£

e}

I
MZ
._r'
N
Q-I IS
* o
~—

I

]

TMZ
N
&
% |8
S—

i= i = i
Ny Ny
M:—ZLl(xl—x)~ZA1(x1—x)pw
i=1 i=1
and Ay is the area of panel i
PW; is the pressure difference across panel i —

dzc
—= is the surface slope of panel i
i

X is the coordinate of the centroid of panel i
X is the x coordinate of the moment center
It is assumed that the moment center lies on the center line of the configura-

tion and in the wing reference plane.

The Ny; + 2 conditions for minimum drag may now be written

? 9
:_F:a_I)—+)‘13_L—+X2:M = 0, izl""NW
pwi Pwi Pw; pwi
+F -
s, "L-L-o B
+F -
By, “M-M-o (116) B

To evaluate these partial derivatives it is necessary to express the camber
surface slopes (dzc/dx)i in terms of the pressure differences across the wing o
panels Pw.- The boundary conditions on the wing require that the slope of the
i

camber surface be equal to the resultant normal velocity component at each point. B

Therefore

dz

C

— ] =n + n + n 117
(dx )i wB; © "wWBV; T Twwv; (117)
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where nWBi’ the normal velocity on the wing due to the body line sources and
doublets, is given by equation (93) for a specified body shape. Expressions for
DWBV; and nWWVi are given following equation (72) and are repeated below for
convenience. The normal velocity on the wing due to the distributions of vorticity

on the wing panels is given directly in terms of Py . as follows
i

wwv; ~ z; awwv.. Pw. (118)
J:

However, the normal velocity on the wing due to the distributions of vorticity on

the body panels is given in terms of the pressure difference across the body

1 ’
pane S, pB.

Thus an expression is required relating pg. to pWi . Equation (99) gives the de-
1

sired result in matrix notation,

lpB} = - [ABB]_I ‘ansl - [ABB]-l [ABw]lpw] (120)
where ‘nBWSl is an array giving the normal velocity components on the body
panels due to the wing thickness distribution. For wings without thickness, this
term will not appear in the above equation.

Finally, substituting equations (118) and (119) into equation (117), and simplifying,
gives the desired result:

NB

dzC Nw
(d_x>i - WB; ]_Z; bjj pws; * ]_Zl aRj; PW; (121)

where bij is an element of the matrix:
Ny

(B3] - kgl [AWBik] [“BBy]

and aR is an element of the reduced aerodynamic matrix given by equation (101):

B O I [ R S O

-1
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In the above expressions, [AWB] is the matrix of the influence coefficients
aWBVij’ [ABB] is the matrix of the influence coelficients aBBVij' and so on,
as described following equation (96).

The partial derivatives indicated in equation (116) may now be evaluated.

The expression for the drag becomes:

Ny Ny NB Ny
D=2 Di=-2, AjPw |tws,; - 2 bij npws, * aR,;. Pw, (122)
& & o i & i
i=1 i=1 j=1 =1
Therefore,
N N N
B W W
2
2 > = - 1Ay DWB; " 2 bijtpws, * 2, 2R, PW;|* 2 Aj2R, PW,
Pw; i=1 ) =1 Vol =1 ] i
=~ A1 \"WB;, ‘Z bij "pws. | - (Ai ag.. + AjaRy; ) Pw, (123)
L ] iz 1] ] ]
= j=1
also, L A
= A
2Dy
aM -
3 = Aj (Xj - X) (124)
pwi
N
W
F —
Slmilarly, 'a'—x— = - Z Al pw. - L
1 =1 i
N
W
aF - —
N, 21 Appy, (x5 -0 - M (125)
J:

Substituting these partial derivatives into equation (116) gives a system of
Ny * 2 linear equations. This system of equation may be written in matrix
form, as follows, where NW has been replaced by N for simplicity.
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N
- 3 r A
R A Nt I A) (g -2 by npw
'Ry, R 1 Ry, 2T, 1 ™1 1 W, 1 "WB, .J/_:_l lj B sj ﬂ
N
SALa SAa, V- {Asa CAsap ) - . . - A, (X, - X) A p A, (n - b, Npure
2 K_w R 2 n_“ 2 1{22 g Xy 2 w, 2 WB2 g_l 2 Bij)
- (-\‘;“H‘ . :\I:lR ”)
N 13
< a 3
>
-(A_a s Aep YL ALy TX)A P, Ay (g - by Npws
N*Ry, IN° N MY N J)
-y Ay 0 0 A L
(xl - X} Al (x, - X) A2 0 0 AZ M
- - L J " J
(126)

The wing pressure distribution for minimum drag may be found by inverting
the matrix and postmultiplying it by the array on the right-hand side of the equa-
tion. If the lift only is to be constrained, the row and column of the matrix corre-
sponding to A, is omitted before the inversion. Finally, the optimum camber
shape may be calculated by equation (114).

The method of Lagrange multipliers outlined above may be extended to in-
clude many other cases of interest. Examples of cases that have been determined

by this method, but not reported here, are:

1) Optimization of the wing camber surface while keeping the total lift, or total

lift and pitching moment,of the wing plus body constrained to given values.

2) Optimization of the wing twist for a given camber and lift (or lift and pitching

moment) on the wing.

3) Optimization of any consecutively numbered group of panels on the wing, while
constraining the camber and twist of the remaining panels, and the wing lift,
or lift and pitching moment. This case may be useful for determining optimum

flap settings at given cruise conditions.

4) Calculation of the incidence at which a given cambered wing will achieve a

given lift coefficient.
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4,7 Theoretical Comparisons

In this section results of the method of aerodynamic influence coefficients
are compared with linear theory calculations published by other investigators.
Theoretical solutions for isolated wings, bodies, and wing-body combinations
are compared. The form of the pressure distributions, and the prediction of
the lift and drag of the examples studied are emphasized. In particular, the
reasons underlying the choice of the various control points used in the calcula-
tions are discussed.

Pressure distributions on flat plate wings. —Pressure distributions have

been calculated for delta, double delta, arrow, and constant-chord wings over
a range of supersonic Mach numbers and compared with linearized theory re-
sults published by other investigators.

It was found that location of the panel control points had a dominant effect
on the form of the wing pressure distributions obtained. Figure 9 shows the
calculated chordwise pressure distributions (corresponding to two control-
point locations) on an inclined, planar, constant-chord wing with sonic leading
edges. The upper plot shows the result obtained when the control point is lo-~
cated at the panel centroids. A strong oscillatory tendency in the chordwise
pressure distribution is observed that does not agree with the exact linear
theory solution, except towards the trailing edge of the wing. The plot on the
lower right shows the result obtained for control points located at 95 percent
of the streamwise chord through the panel centroid. The chordwise pressure
distributions are now smooth, and they follow the linear theory solution closely,
except very near the leading edge and in the region of the strong discontinuity
introduced by the wing-tip Mach wave,

The effect of the control point location on the pressures calculated for
three panels on the inboard row of this wing is shown in the sketch on the lower
left of the illustration. Here the pressures converge smoothly towards the
correct linear theory value as the control point is moved towards the trailing
edge of the panel. This is true for panels having sonic or supersonic trailing
edges. For panels having subsonic trailing edges, however, the normal velocit:
at the trailing edge is infinite, and the panel pressure becomes indeterminate.
To avoid this difficulty, and to maintain a good approximation to the exact linea~

theory pressure coefficients, the control points have been arbitrarily located
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at 95 percent of the streamwise chord through the panel centroid.  This choice
of control-point location has given an adequate representation of the pressure
distribution for all cambered or uncambered lifting wings so far investigated.

Examples illustrating the results obtained for isolaled wings arc presented
on the following pages. In all these examples, the wing has been subdivided
into 100 panels, spaced evenly in 10-percent increments in hoth chordwise and
spanwise directions. ‘

Figure 10 shows the pressure distribution calculated for flat-plate delta
wing at incidence, compared to an exact linearized theory solution. The wing
planform corresponds to that of Example II of reference 11, and has a sub-
sonic leading edge with tan A / B8 = 1.2. The present theory agrees reason-
ably well with the exact result, except in the region of the wing tip, or near the
leading edge. The overall lift coefficient of the wing is 3. 58, compared to the
exact value of 3.55. The wing center of pressure is correctly located at a point
two thirds of the root chord from the apex.

Figure 11 shows the pressure distribution calculated for a flat-plate arrow
wing at incidence. These results are compared with both the exact linear
theory solution and to another influence coefficient method recently published
by Carlson and Middleton (reference 5). The wing has a subsonic leading
edge and supersonic trailing edge at Mach 2.0. This particular wing planform
has been studied extensively at the NASA Langley Research Center and as a
result, both theoretical and experimental data are available for comparison.
The present method agrees reasonably well with both the exact linear theory
result and the cited numerical method.

The final example, showing the pressure distribution of a flat-plate, double-
delta wing, is shown in figure 12. This was chosen to illustrate the application
of the method to more general planforms. The exact linear theory analysis of
this planform, based on a superposition procedure, was presented in reference

12, This particular planform was also analyzed by Middleton and Carlson
in reference 2. The illustration shows the spanwise pressure distributions
at two stations on the wing, which were obtained by interpolating chordwise
pressure distribution plots. The pressure distribution shows the same magni-

tude and trends as the exact solution, but does not reproduce the pressure dis-

continuities predicted by the method of superposition,
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The lift and center of pressure at two Mach numbers were estimated with rea-

sonable precision, however, and are presented for comparison in the following table:

M =1.414 M = 1,667
METHOD CL XCP ch X()P
Superposition 0.0514 0,682 0.040] -
Analysis (12)
Present Method 0.0516 0.691 0.04148 0.697
Carlson and 0.0507 0.687 0.0119 0.686
Middleton (2)

Pressure distribution due io wing thickness. —Wing-thickness effects are

simulated by constant distriutions of sources on the panels. The behavior of
these singularities is sutticiently difterent trom the constant distributions of
vorticity used to represent the lifting surfaces that a new control point must
be defined for calculating the velocity components and pressures resulting from
thickness. Best results were obtained when the thickness control points were
located at the centroids of the panels.

The source singularities approximate the wing by a series of flat, wedge-
like surfaces bounded by ridge lines along the panel edges. The slope of these
surfaces corresponds to the actual surface slope only at the panel centroids;

along the panel edges, the surface slope is discontinuous.

This method of representing the wing thickness appears to be adequate, pro-
vided no panei cdjcs have the same slope, or nearly the same slope, as the Mach
line. If this occurs, the solution diverges and an undesirable oscillation in the
chordwise pressure coefficient generally appears in the calculation in the region of
the sonic panel edge. An example of this effect is shown by the unsmoothed distri-
hutions (@& = 0°) in figure 27 (page 157) for a subsonic leading-edge arrow wing.
The oscillation is insignificant inboard, but grows to an unacceptable magnitude as
the tip section is approached. Fortunately, it is usually possible to fair a smooth
curve through the end points of the pressure nscillation, a curve that will give a
better approximation to the true chordwise pressure distribution in these cases.

It should be noted that this pressure oscillation can be minimized by adding a

singularity of higher-order to the present source representation. This additional
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singularity introduces a lincar variation of the source distribution in the x direc-
tion, and would make it possible to eliminate the discontinuitics in the surface
slopes along the panel edges inside the wing planform,

Pressure distribution on cambered wings., — The pressure distribution on

cambered wings is calculated in the same manner as the pressure distribution

for flat wings at incidence. The slope of the camber surface must, however,

be calculated at the panel control points. A sample calculation showing the chord-
wise pressure distributions on a cambered arrow wing with thickness at threc
angles of attack is presented in figure 28, on page 158.

The inverse problem of calculating the camber surface corresponding to a
given pressure distribution is numerically simpler than the preceding problem
and generally yields excellent results. An example giving the camber surface
of a delta wing planform corresponding to a linearly varying chordwise
pressure distribution is shown in figure 13. The camber surface is seen to agree

very closely to that predicted by the method of reference 11.
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Drag of cambered wings. — The pressure drag of a cambered surface is

given by the double integral of the product of the surface pressure and slope,

evaluated over the wing area;

b/2 pTE iz
D= Cp dx dx dy (127)
-b/2 JLE

In equation (110), this integral is replaced by a summation over the wing panels,

as follows.

N
D = Z%V c. [92) a, (128)

where the slope of each panel is defined at its control point. This formula is ade-
quate to calculate the drag of uncambered wings because the pressure on each
panel is assumed to be constant, and the surface slope is constant between con-
trol points. For cambered wings, on the other hand, the surface slope of the wing
varies continuously between control points, and may even approach infinity near
the leading edge, as illustrated in figure 13. As a result, equation (128) will not
in general yield a good approximation to the drag unless the term (dz /dx)i is re-
placed by the average slope of panel i.

As illustrated in figure 14, the slope of a cambered wing is approximated by
a series of straight lines through the control points. The slope at any point on a
given panel is estimated by a linear interpolation formula. If the panel lies
along the leading edge, the slope is estimated by a linear extrapolation of the

slope of the first two panels. The formulae are given below:

For leading-edge panels,

(Q—A)l _fdz\ , _R-R _ 'cR | (d_zl i} (d_z)l (129)
dx dx 1+ rf22 - 1) dx dx

For the remaining panels,

= ..
% :(g—z)l+ R-R P %Z— - g_z) (130)
Xh XA (Ci ) Ci-1 X Xfi1
1+ R[— -1
Ci-1
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where R is panel chord fraction defining the location of the panel control point
R is the panel chord fraction defining the average slope
ci is the panel chord

¢j-1 is the chord of the preceding panel

In equation (129) the subscripts 1 and 2 refer to the first and second panels
along the leading edge in any given row.

The value of R has been chosen by making a comparison between the drag
given by the program for a constant pressure delta wing, and the exact linear

theory solution for this wing, which is:

2 2
gC
CD = L 1 - 2 b cosh"lb - cos'1 1 - Vbz -1 cosh"1 b_+1

4 m b 2b
for b = tagA > 1.0
gc’
=— for b < 1.0 (131)

The results are presented in figure 15. It can be seen that the drag given by
the program varies linearly with ﬁ, and increases as the point used for defining
the slope moves towards the trailing edge of the panels. For subsonic leading-
edge delta wings, agreement occurs for 0.675< R< 0. 825, depending on the
wing aspect ratio. It should be emphasized that the drag given by the program
deviates very little from the exact value over the entire range of R for wings
having sonic leading edges, but that the deviation increases as the sweep-back
increases. Wings having supersonic leading edges showed results almost inde-
pendent of the choice of R.

Additional correlations of this kind are required to confirm the validity of
this method for calculating the drag of cambered wings. On the basis of the
present limited study, however, it was decided to use the value of R = 0.75 in
the program for computing the effective panel slope used in the drag calculations.
This choice of R gives values of CD/ﬁ CL2 which differ by less than 2 percent
for wings having the lowest aspect ratios studied, and less than 1 percent for the

sonic leading-edge planform.
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Wing camber for minimum drag. — Plots showing the minimum drag of a

family of isolated delta and clipped-tip arrow wings arc presented in figures 16
and 17 for comparison with data presented in reference 3. The present theory
cilculates the surface shape for minimum drag by first calculating the optimum
pressure distribution by inverting the matrix of equation (126), and then substituting
this result into equation (114) to obtain the corresponding panel slopes. Both the
aerodynamic matrix and the panel slopes are calculated for control points located
at 95 percent of the local panel chords, to avoid undesirable oscillations in the
results. The slope interpolation formulae developed in the previous section are
then applied to calculate the drag of the resulting cambered wing. The interpolated
panel slope corresponding to R = 0. 75 was used in the drag calculations shown in
the figures.

Figure 16 shows the results obtained for a family of delta wings. The mini-
mum drag calculated by the present program is somewhat higher than that esti-
mated by the methods of reference 3 for wings having subsonic leading edges.

On the other hand, the results do agree reasonably well with the predictions of
the aerodynamic influence coefficient method of reference 1 . The drag predicted
for the flat-plate wing without leading-edge suction agrees closely in all three
methods, however.

Figure 17 shows similar results for a family of clipped-tip arrow wings.

As indicated on the figure, excellent agreement is obtained between this result
and the minimum drags estimated by the methods of both references 1 and 3.

It is apparent from an examination of these results that further correlations
between the present theory and other known minimum drag solutions will be very
desirable in order to obtain confidénce in the range of application of the method.
In the meantime it is sufficient to say that the method gives good agreement
with other accepted procedures for determining the wing camber surface for

minimum drag.
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Pressure distribution on a cone, — The circumferential pressure distribution
at Mach 2.0 for a 10-degree circular cone at an incidence of 0. 10 radian is presented N
in figure 18. The pressurc distributions are identical at all sections along the
length of the cone. The results obtained with both the lincar and nonlincar pres-
sure coefficient formulae are illustrated. On the basis of the nonlinear formula
(equation 102) the program predicts a lift coefficient only half the exact theoreti-
cal value of 0.185 given by the cone tables. The lift coefficient of the cone is
predicted much more accurately if the linear pressure coefficient formula (equa -
tion 105) is used in the program.

At zero incidence, the linear formula again gives a closer approximation to
the exact value. The cone tables give the value for Cp = 0.104, while the linear
formula gave Cp = 0.114, and the nonlinear formula Cp = 0.087.

For bodies of revolution of arbitrary shape, it has been found that, in general,
the nonlinear pressure coefficient formula gives the best approximation to the ex-
perimental results at zero incidence. Lift effects, on the other hand, are best
estimated by the linear formula. An example comparing the theoretical and ex-
perimental pressure distributions on a parabolic body of revolution is shown in

figure 25 (page 153).

Pressure distribution on wing-fin combination. — The pressure distributions

calculated for a rectangular wing in the presence of an inclined rectangular fin
are presented in figure 19, and compared with the linear theory solution given by
Snow in reference 13.

The theoretical solution for the case in which the wing has an incidence o,

and zero fin incidence, is given below:

On the wing -

Ty .
Cp =202+ 2yl R o mB/y (132) B
Yy 7 l—Rnycos‘nB/‘y
On the fin y
m/Y in m —
1 %tan“l R’ sin 7 B/y (133)

1+ R"/y cos T B/y
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FIGURE 18 PRESSURE DISTRIBUTION ON 10° CONE AT INCIDENCE
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wherc B - cos~! (Lzu:s A)

R = (1 - N1 - rz)/r
and r B \/y2 + z2/x.

In the figure, the spanwise pressure distributions at the midchord are compared
for three fin inclinations. The agreement is excellent.

The program, in its present form, will no longer admit cases involving wing-
fin combinations as shown. This is the result of specializing the geometry
definition and paneling sections of the program, which restricts its application

to configurations composed of wings and circular bodies only.

Pressure Distributions on Wing-Body Combinations. —Figure 20 shows the

pressure distributions calculated for a rectangular wing-rectangular body com-
bination analyzed byLu Ting in reference 14. The calculated pressure coeffi-
cients oscillate above and below the theoretical results published by Lu Ting,
particularly in the area of the wing-body intersection, The reason for this oscil-
latory behavior is not known at present, although an instability inherent in the
numerical analysis is suspected. It is interesting to note that similar instabil-
ities did not occur for the polyg.onal bodies used to approximate bodies of re-
volution in the other examples presented in this report.

Wing and body pressure distributions calculated at Mach 1.48 for a configu-
ration composed of an unswept rectangular wing centrally mounted on a circular
body are presented in figures 30 through 33 (pages 161 through 164). The pre-
sure distributions calculated by Nielsen (reference 15) are presented in terms of
an incremental pressure coefficient P, obtained by taking the difference between
the local pressure coefficients for the lifting case and the non-lifting case (aw =
a B = 9. Inthis way, the effects of the nose shape on pressure distributions
are eliminated. It should be remarked that the present theory calculates the
surface pressure distributions including the effect of the nose shape; consequent-
ly, the results presented are the difference between two calculations. The in-
cremental pressure coefficients calculated on the wing and body agree favorably

with Nielsen's theoretical results, both for wing only at incidence and for the

case in which both wing and body are at incidence.
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5. COMPUTER PROGRAM

5.1 Description

The digital computer program described in this section has been developed
to solve the problem of optimization of wing camber surfaces for wing-body
combinations at supersonic speeds. Direct and other indirect aerodynamic
problems can also be solved,

The program is coded in FORTRAN IV and MAP languages for the IBM
7090/7094 (32K) digital computer under the Systems Monitor, IBSYS Version
12. It is compatible with the NASA-Ames direct-coupled IBM 7040/7094 com-
puter system. Because the program exceeds the capacity of a single core load,
the Loader Overlay feature is used which allows the complete program to be
subdivided into smaller segments, or links. The links are processed in a
sbecified order to solve a particular problem.

The Overlay feature requires one of the system units to be used as the
input-output tape on which the links are written. This unit is specified on the
$ORIGIN control card according to the procedure outlined in Part II. In addi-
tion to the input and oufput tapes, the program uses seven tape units for scratch
purposes. The choice of tape units to be used will depend on the particular com-
puter installation, and tapes must be changed as required. A special purpose
subroutine, OPCAMI, initializes all the tape units and assigns a logical number
to each. To make any tape changes, it will be sufficient to change only the
logical designations in this subroutine (see Part II).

The complete program consists of four sections: Geometry Definition,
Geometry Transformation, Geometry Paneling, and Aerodynamics, as out-
lined by the flow chart (figure 21). The first two sections provide a suitable
geometric description of the configuration and the third section subdivides the
configuration into panels. The Aerodynamics section performs all aerodynamic

calculations and solves the problem under consideration.
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Program execution is controlled by the subroutine OPCAM, a control pro-
gram located in link 0 under the program Overlay structure. Those control
cards within the data deck that determine which program sections are used to
process the case, are read by the subroutine OPCAM and lower-level sub-
routines in each of the following four program sections:

1. GEOMD in link 5 (Geometry Definition section)

2. TFLAT in link 11 (Geometry Transformation section)
3. PANEL in link 12 (Geometry Paneling section)

4. AERO in link 20 (Aerodynamics section)

Multiple cases, each involving a different wing-body configuration, can be
run. When a nonsystems error condition occurs during processing within a
section of the program, an error message appears, execution of the present
case is terminated, a partial data printout is given, and the following case is
processed.

Execution time averages 7 to 8 minutes for a typical (100 panels) body-
alone or wing-alone case and 18 to 20 minutes for a wing-body combination of
200 panels. The computer time and number of printout lines for a single con-
figuration can be estimated from the following equations based on experience
on an IBM 7094/M2.

Time (minutes) = 2.2 + 0.3G + 3.8 - 1074 - P%) - A +0.6C,
where G indicates type of paneling:
= 0., no paneling

1., wing paneling only

= 2., wing and body paneling

P is number of panels (if no paneling is required, use P = 10)

A indicates aerodynamic calculations:
= 0., no aerodynamic calculations
= 1., aerodynamic calculations requested
C is number of aerodynamic cases. Each of the following

are considered a case:
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Wing oplimization casc

Dircet aerodynamic casce

Indircct aerodynamic case

Each angle of a polar series
Output (lines) = 100+ {500+ (10 - PY/2) - v . ¢} - T
where V indicates velocity component printout:

= 1., no velocity component printout

il

2., velocity components requested
T indicates type of case:

=1., wing-alone case

= 2., body-alone case

= 3., wing-body case
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5.2 Program Usage

The program solves a problem in three steps. In the first step the con-
figuration geometry is defined and transformed to a more convenient repre-
sentation from input information. A wing alone, body alone, or wing-body
combination can be defined. In the second step the configuration is paneled
and required geometric data are calculated. Figure 22 illustrates the definition
and paneling sequence. The third and final step performs the aerodynamic
calculations for each case requested., Discussion of the body alone, wing alone
and wing-body problems follows.

Body alone. — For the body-alone case, no paneling is required. The
entire body is represented as an equivalent body of circular cross section by a
series of equally spaced line sources and doublets. The user may define a
cambered body with arbitrary cross section and have the program determine
the equivalent body of revolution, or an equivalent body may be input with its
camber specified separately.

The user specifies the body by a number of X-stations at which an array of
radii (0 ) and angles ( 9) are given. A maximum of 50 body stations may be
specified. The program assumes that all bodies are symmetrical about the
vertical plane; therefore, only data for half-bodies are specified, that is, 0
degrees < 6 < 180 degrees where the top meridian line corresponds to 6 =
0 degrees and the bottom meridian line corresponds to 6 = 180 degrees.
Alternate techniques for specifying body stations are presented in the discus-
sion of card input format, section 5.3.

An axis, referred to as the body definition axis, is established parallel to
the computer reference X-axis. T'he body definition axis location is established
by specifying a Y,Z coordinate pair through which the axis must paés. Points,
from which the © - 8 arrays generate body sections at each station, are
specified relative to the body definition axis at each defining station. After

the O - @ array has been computed, the program constructs longitudinal

98



meridian lines through sets of radii end points. The resulting computer defini-

tion will look similar to the following sketch:

~~=—— BODY DEFINITION AXIS

Y

REFERENCE X~AXIS

— LLOCAL P-0 ORIGIN

- Az X
The locations of the cross-section centroids of the aft body station and the for-

- ward body station are then determined by the program. Centroid locations are
determined from the station cross-section geometry. The section area and

- centroid depend on the type of interpolation chosen to define the fairing between
the given points. If linear interpolation is requested, a polygonal area will be

- formed. If biquadratic interpolation is requested, a somewhat different area
will result as shown below.

- | 2 7

P

6

\2’/ GIVEN POINTS

—a—— INTERPOLATED

p POINTS
— Y Y
- BODY STATION AREA FOR BODY STATION AREAFOR
LINEAR INTERPOLATION BIQUADRATIC INTERPOLATION
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If a body of revolution is being defined (constant p at each station), a sym-
metrical f-array should be specified or the centroid location will be incorrect.

The sketch below shows how a nonsymmetrical 6 -array can cause an error

in the centroid location.

7 Z
CENTROID
CENTROID v —_—
CONSTANT  p CONSTANT @
SYMMETRICAL 8 ARRAY NONSYMMETRICAL © ARRAY

After the fore and aft section centroids have been determined a new body
axis, the X -axis, is constructed through these centroids. All remaining cal-
culations are performed relative to the new body axis system. An equivalentbody
of revolution about the x -axis is determined. The number of stations along the
new body axis at which line source boundary conditions are located is specified.
Because these stations are evenly spaced along the body length, the specifica-
tion of the number of sources effectively establishes their location. The body
is cut at each source control station by transverse planes. Centroid locations
relative to the body axis are determined from the body sections resulting from

these transverse cuts.
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The average of the radii connecting the x-axis with meridian lines at each
source control station is used as the radius of the equivalent body with circular
cross sections. These radii are used by the aerodynamic section to determine
the body source strengths.

The aerodynamic section now determines the axial and circumferential
velocities and pressure coefficients at source control stations. Total Cy,, Cp,
and Cpp are determined for the specified Mach number and angle of attack. The
program input for a parabolic body having a fineness ratio of eleven is presented
on page 134 and 135 in section 5.4.

Wing alone. — It is first necessary to define the wing planform by specify-
ing the coordinates of all corner points and break points, Control chords,
except perhaps the wing tip control chord, are defined streamwise through each
corner point and break point. A minimum of two control chords must be
specified. A pointed wing tip is considered as a control chord of zero length.
The wing planform is defined by projecting the actual wing into the X,Y plane

as shown below,

—>Y

PLANFORM CORNER POINT

PLANFORM BREAK POINT

CONTROL CHORDS

CONTROL CHORD
OF ZERO LENGTH

OR
WING TIP CONTROL CHORD
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The program paneling scction is used to panel the wing. A maximum of 100
wing panels may be specified.  Spanwise punel edges are specified by a single
set of constant percent chord lines. Streamwise panel edges ure specified by a
series of wing buttock line locations. Wing tips can be pancled in two different

wiys as shown below:

7

COINCIDENT
\\ LEADING AND
TRAILING EDGE LEADING EDGE TRAILING EDGE
X co X POINTS (ZERO)
RNER POINT RNER POINT
co LENGTH
=——TRAILING EDGE CONTROL CHORD)
WING TIP CONTROL CORNER POINT
CHORD

Tip paneling is in part controlled by the technique of defining the wing. If a
planform corner point on the trailing edge is joined to a corner point on the lead-
ing edge by a wing-tip control chord of finite length, the spanwise panel edges
will form quadralateral tip panels. If the planform leading and trailing edge tip
points are specified as coincident, the tip will have triangular panels.

Wing thickness is specified by tables of upper and lower airfoil ordinates.
Camber and twist can be either included in these ordinates or input as slopes in
the aerodynamic section. The airfoils, one for each streamwise column of
panels, must be oriented streamwise at spanwise locations corresponding to the
Y-centroid of each column., A nondimensional airfoil ordinate array can be spe-
cified, because the program scales every array to fit the chord length at the

specified span location. Further, for wings having no twist and the same airfoil
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from root to tip, only one ordinate table is needed. The progrum will scale and
correctly locate the airfoils across the span.

Program inputs for an arrow wing having camber, twist, and thickness are
shown in section 5.4 (page 137). The aerodynamic section calculates pressure
and force coefficient data for the specified wing geometry at Mach 2, 05 for an
angle of attack series (68 = 0, -2, 2, 6 degrees). In addition, the wing camber
shape, pressure coefficients, and force coefficients for a wing with identical
planform and thickness distribution are determined for two cases. One has a
constant 4 Cp distribution and the other is a minimum drag wing. Both are con-
strained to a total Cy, = 0.1.

Wing-body combination. — The wing-body case, the most complex both

geometrically and aerodynamically, requires full utilization of the program.
The wing and body are defined as in the previous discussions on wing alone and
body alone. However, because the effect of the wing on the body is desired, it
is necessary to panel the body in the region aft of the wing leading-edge inter-
section. The effect of the wing on the body is determined by the influence co-
efficient method. Body pressures caused by body thickness and camber are
still determined by the source-doublet method. A maximum of 100 body panels
and 100 wing panels may be specified.

The program panels the defined body. If it is desired that the equivalent hody
of circular cross section be paneled, the body defined must be the equivalent
body. Note that in a body alone case, the radii and station centroid locations

determined by the geometry section are passed directly to the aerodynamic

section for calculating the source and doublet strengths. This procedure bypasses

the paneling section. Therefore, the paneling section operates on the body definition.

The geometry section defines the body in the same manner as the body-alone
case. The meridian lines constructed in the definition section form the stream-
wise body panel edges. Therefore, it is necessary to know the desired body
paneling when the body definition is being established, because the @-array

determines the radial location of meridian lines. The transverse body panel
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edges are specified in the paneling section. Wing paneling is handled the same
as in the wing alone case except that the inboard wing panel edges formed by the
wing-body intersection are determined by the program. The wing definition
should extend into the body. This ensures that a wing-body intersection will be
found by the program. Only the exposed wing planform is paneled.

The procedure of establishing a body axis system through the forward and
aft body-station centroids is the same as the body-alone case. In addition, the
wing is oriented parallel to the x-y plane. The wing height, z,, is computed by

the program as the average of the leading and trailing edge heights above the

x-y plane.
z W
DEFINED WING POSITION
MID CHORD
TRANSFORMED
WING POSITION
] AFT ST&BION
~7 — I 7 — CENTR
- Za L X

- X

This transformed wing-body combination in the body axis system is the
configuration that is paneled. All panel corner points, centroids, and control
points are determined relative to the body axis system. Any wing incidence
desired relative to the x-axis may be given by specifying an airfoil ordinate
table with the correct incidence or may be input as slopes in the aerodynamic

section, The airfoil ordinate tables affect neither wing nor body paneling.
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The wing intersection must not cross a body definition meridian line. This
can be prevented either by choosing a 6 -array that straddles the wing intersec-
tion region or by specifying a 8 that directly corresponds to the wing-body inter-

section in the body axis system.

WING INTERSECTION

- Y

WING PLANE @ f

0 ARRAY THAT STRADDLES THE
WING INTERSECTION REGION

>

WING INTERSECTION
— /—
WING PLANE ¢
- 1 2 s

0 ARRAY THAT CORRESPONDS TO THE WING
INTERSECTION ALONG A BODY MERIDIAN LINE

If the body is defined with the wing intersection between meridian lines, the
paneling section will construct an additional longitudinal panel edge running aft

from the wing trailing edge as shown in the following sketch. This completes
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the additional body panel strip formed by the wing intersection. The number of
panels located around the body will be the same at all stations, and the additional
panels ereated by this procedure must be included within the maximum of 100

body panels.

z
A BODY DEFINITION MERIDIAN LINES

NO PANELING
‘ IN THIS REGION

————

/—WING INTERSECTION

AN

/ -

ADDITIONAL BODY PANEL EDGE RUNNING
AFT OF WING INTERSECTION AND HALFWAY
BETWEEN EXISTING MERIDIAN LINES.

Body pressures due to thickness are determined from a set of equivalent
body radii. For bodies with unusual camber or cross-section geometry, it is
often more practical to define and panel the uncambered equivalent body of revo-
lution. A two-pass technique can be used to facilitate determination of the
equivalent body.

With the two-pass procedure only the definition and paneling sections are
used for the first run. The actual body is defined as described in the section on
bodies alone. All aerodynamic cards are omitted. The set of equivalent radii
(one radius for each source control station) used to determine the body source
strengths are calculated. This array of equivalent radii may then be used to
define the new equivalent body for the second computer run, which then includes
all desired aerodynamic data. This equivalent body can also be cambered by
specifying the desired displacement of the source control station centroids from
the x-axis. The body camber table which is in the aerodynamic input card set

is used to specify such a body camber.

107



Transverse body panel edges in the wing intersection region must coincide
with the spanwise wing panel edges, but do not have to be as numerous as the
spanwise edges. The body panel edges in this region are specified by a table of
integers that identify those spanwise wing panel edges, which continue around
the body to form transverse body panel edges. The spanwise wing panel edges
are numbered consecutively from leading edge to trailing edge, as sketched
below. The integers corresponding to those edges that continue around the body
appear in sequence in the table. The table must always start with the integer 1

and terminate with the wing trailing-edge number.

THE NUMBERS 1, 3,5
SHOULD APPEAR IN THE
BODY PANEL TABLE

WING SPANWISE PANEL EDGE

NTIFYING INTEGERS
IDENT E FOUR TRANSVERSE BODY PANEL

EDGES AFT OF WING DEFINED
IN THE BODY COORDINATE SYSTEM

% LI 1 . X

Transverse body panel edges aft of the wing trailing edge are defined in the body

coordinate system.

Paneling the body is more complex than paneling a wing planform, since
many multipart panels may occur. Two-part panels also can occur on some
wing tips and along the inboard strip of wing panels if the wing intersects the
body in a region of closure as shown below,

y

TWO-PART WING
PANEL REGIONS
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Body panels occurring in regions of closure arc three-part panels. All
wing and body panels must be quadrilateral with two streamwise edges. When
paneling situations occur that do not satisfy these conditions, a multipart panel
whose individual parts satisfy the conditions is constructed. A typical hody
panel and its parts are shown here:

STREAMWISE SIDE,
z ZERO LENGTH

SECONDARY
PANEL PARTS

STREAMWISE SIDE,

Y ZERO LENGTH

WING LEADING EDGE

TYPICAL THREE-PART
BODY PANEL

Most supersonic bodies do not have regions of rapid closure (hypersonic
blunt bodies are not adaptable to the linearized analysis techniques of this pro-

gram); therefore, the secondary hody panel parts are usually very small. If

these secondary areas are nearly zero, the matrix of influence coefficients can
become singular, preventing matrix inversion. A tolerance control on the lead-
ing-edge slope of these secondary panel parts can be used to avoid this matrix
problem. This tolerance is specified in the paneling section. The same matrix
problem can result from secondary wing panel parts. A control tolerance on
these wing panel parts also is specified in the paneling section. Program input
illustrating the use of these tolerance controls (cards 5P and 9P) is contained in

section 5.4 (pages 146 and 147).
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5.3 Program Card Input Format

Aerodynamic cases that can be solved for the various configuration problems

are the following:

CONFIGURATION
BODY ALONE WING ALONE WING-BODY
COMBINATION
] | | T

Determine pressure dis-
tribution, Cy, Cp, and
Cp» for an equivalent
body with the same
longitudinal area distri-
bution and camber.

Determine camber and
twist, C1, Cp, and Cyp,
for a wing with given
pressure distribution,

1

Determine pressure dis-

tribution, Cy, Cp, and
Cyp for a wing with
given camber, twist, and
thickness.

Determine wing camber and
twist, body pressure distri-
bution, and total Cy,, Cp,
and Cpq, for given body and
a wing with given pressure

distribution,
||

1

Determine wing and body
pressure distributions, total
CL, Cp, and Cypq, for given
configuration,

Determine optimum
camber and twist, Cp,
and Cyy, for a wing with
given Cjp, or given Cp,
and Cypp.

1

Determine optimum wing
twist and camber, wing and
body pressure distributions,
total Cy,, Cp, and Cypj, for a
given body and wing with spe-
cified C1, or given Cy, and
center of pressure,

The corresponding input card sets needed to define and analyze a configuration

are outlined by figure 23

A completed input data deck will resemble the illustration

of figure 24. Multiple aerodynamic cases on a given geometry for a given Mach num-

ber may be requested in the aerodynainic set. If the Mach number of configuration

are changed, the geometry must be redefined.
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CONFIGURATION

BODY ALONE

WING ALONE

GEOMETRY
DEFINITION SET
106D, 22D

WING-BODY COMBINATION

GEOMETRY

DEFINITION SET
1D, 10D»~18D, 22D

GEOMETRY
PANELING SET
1P, 2P

GEOMETRY
PANELING SET
1P, 2P, 3P, BP»=14P

AERODYNAMIC SET
1A, 2A

AERODYNAMIC SET
1A, 2A

GEOMETRY

DEFINITION SET
1D#20D, 22D

GEOMETRY
PANELING SET
1P#14P

AERODYNAMIC SET

GIVEN PRESSURE
CASE |
JAm=5A, 7A, 10A

1A, 2A

GIVEN PRESSURE

GIVEN SHAPE
CASE 2
3A®6A, 10A

GIVEN SHAPE
CASE 2
3A®5A, 8A, 10A

CASE 1
3A®TA, 10A

GIVEN SHAPE
CASE 2

WING OPTIMIZATION

CASE 3
3Am5A, 9A, 10A

3JA®6A, BA, 10A

WING OPTIMIZATION

CASE 3
3A®6A, 9A, 10A

FIGURE 23 OUTLINE OF INPUT CARDS NEEDED TO DESCRIBE AND ANALYZE A CONFIGURATION
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SAMPLE DATA DECK

CARD TO TERMINATE

PROBLEM SET \

CONFIGURATION FOR OTHER

MACH NUMBERS
TWO BLANK CARDS

REPEAT FOR ADDITIONAL
PROBLEMS OF DIFFERENT
CONFIGURATIONS OR SAME 1

A

TERMINATE AERODYNAMIC

CASES

DATA CARD SETS 3A-
10A MAY BE REPEAT-
ED AS MANY TIMES

AS NECESSARY (i.e.,

minimum drag, flat
plate, constant
pressure)

(END OF DATA

DDITIONAL PROBLEMS (STARTS WiTH DEFINITION SET)
BLANK CARD 1iA
BLANK CARD 1]A

DATA CARDS 3A-10A/(FIRST CASE)

DATA CARD 2A

DATA CARD 1A (AERODYNAMIC SET)

FIGURE 24 EXAMPLE DATA DECK
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GEOMETRY DEFINITION CARD SET

All geometry definition data, except title cards and literal statements, are

punched in six-field, ten-digit format.

field,

A decimal point is required in each data

For a body-alone problem definition, cards 10D through 19D are omitted.

For a wing-alone problem definition, cards 2D through 6D, 19D, and 20D

are omitted,

Card 1D

Card 2D

Card 3D

Card 4D

Column Code

1-6

1-4

1-72

1-10

11-20

21-30

31-40

41-50

DEFINE

BODY

TITLE

BNS

BTHETA

AXIS(1)

AXIS(2)

CHDB

Explanation

Columns 1-6 contain the word DEFINE,

Columns 1-4 contain the word BODY.
Card 2D is used only when a body or
wing-body combination is defined.

Any desired title.

Number of defining body stations.
2. < BNS = 50..

Number of points on each defining body
station, i.e., the number of P, 8 or
Y, Z pairs per station.

2. < BTHETA < 16..

Y-coordinate of body definition axis
(cf. page 99).

Z-coordinate of body definition axis
(cf. page 99).

Dimensional tolerance to be used in
generating additional body meridian
line points between given stations. If
CHDB < 0. or if BNS < 4., no addi-
tional points will be generated. If

0. < CHDB «< 0.001, then a value of
0.001 will be used (see page 202 of
Part II).
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Column Code

Card(s) 5D 1710 8,
(3 maximum)
51-60 B¢
etc,

Card(s) 6D* 1-10 STA
(50 maximum)
11-20 YZ(1)

21-30 YZ(2)

31-40 SCODE

Note — if options 1, 4, 5, or 6
are designated, the added infor-
mation card(s) 7D, 8D, or 9D
must be inserted behind that
station card 6D and before the
next station card 6D.

*One card is needed for each
defining station.

Explanation

Array of angles (8), in degrees at each
defining station. There must be exactly
BTHETA angles < 16, six per card.

X-coordinate of hody station.

A Y-increment added to body definition
axis to establish a local origin from
which all p, 8 for this station are
measured,

AZ-increment added to body definition
axis to establish a local origin from
which all p, g for this station are
measured (see page 99).

= 0. this cross section is identical to
previous section.

= 1. this cross section is specified by
BTHETA values of p (on cards 7D).
The @ -array of card(s) 5D will be
used,

= 2, this cross section is a circle.
(Radius given in columns 41-50,)

= 3. this cross section is an ellipse,
(Horizontal semi-axis is given in
columns 41-50, the vertical in
columns 51-60.)

= 4, this cross section is circular
(radius given in columns 41-50) with
an angle array (on card(s) 8D) differ-
ent from the @-array on card(s) 5D,
This option allows local deviations in
the meridian lines,

= 5. this cross section is specified by
a set of p (on card(s) 7D) and by a
nonstandard set of 8 (on card(s) 8D).
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Card(s) 7D

(3 maximum
per station)

Card(s) 8D

(3 maximum
per station)

Card 9D
(6 maximum
per station)

Card 10D

Card 11D

Card 12D

Column Code
41-50 RAD(1)
51-60 RAD(2)
1-10 ﬁ?l

- p
51-60 otc. | B

0
1:10 .1
1-10 Yl
11-20 2,
21-30 Yo
31-40 Zo
41-50 Y4
51-60  Zg
etc.

1-4 WING
1-72 TITLE
1-10 PNLE

Explanation

= 6. this cross section is given hy a
set of Y, Z pairs (on cards 9D).

Radius of section if SCODE = 2, or 4.,
Horizontal semi-axis if SCODE = 3..
Not used otherwisc,

Vertical semi-axis, if SCODE = 3..
Not used otherwise.

A set of body radii P if SCODE = 1. or
5.. There must be BTHETA < 16
values of pP.

A set of 9 if SCODE =4, or 5.. There
must be BTHETA < 16 values of g.

Array of Y, Z coordinate pairs if
SCODE = 6..

Columns 1-4 contain the word WING,.
This card is used whenever a wing is
defined. For the case of a body alone,
omit cards 10D through 19D. After
reading a WING card, the program
expects wing definition data.

Any desired title,
Number of corner or break points de-

fining the planform leading edge (see
page 102),
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" Card 13D

Card(s) 14D

Card(s) 15D

Column Code

11-20

21-30

31-40

41-50

51-60

1-10

11-20

21-30

1-10

11-20

21-30

31-40

41-50

51-60

1-10

11-20

21-30

31-40

41-50

PNTE

AFN

PLN

. WUL

CHD

PCODE

ACODE

EPS

etc.

Explanation

Number of corner or break points de-
fining the planform trailing edge.

Number of planform control chords.
AFN 2 2., including the wing-tip

control chord.,

Number of constant percent chord

lines used to form spanwise panel edges.

Wing leading and trailing edges are
counted in this number.

= 1.
Must be left blank,

= 1.

Must be left blank.

Array of points defining the planform
leading edge, arranged in order from
inboard to outboard. There must be
PNLE point pairs; three coordinates
per card.

For wing-body combinations, X; and
Y1 must lie inside the body so that an
intersection can be calculated,

Array of points defining the planform
trailing edge, arranged in order from
inboard to outboard. There must be
PNTE point pairs; three coordinates
per card.

For wing-body combinations, X and
Y1 must lie inside the body so that an
intersection can be calculated,
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Column

Code

51-60
ete.

LEADING EDGE POINT
DEFINES CONTROL CHORD

Yg

TRAILING EDGE POINT
DEFINES CONTROL CHORD

Explanation

Cards 16D Cards 16D and 17D always occur in pairs (unless AFNU = 0. on
card 16D) to define the wing control chord, There must he

AFN 22, pairs of 16D and 17D cards.

1-10 AFK Code to indicate how the control chord
is oriented on the planform. See
sketches below.

T > Y T > ’ > Y
| t
| i ]
: CONTROL } X} CONTROL L X CONTROL
X1 _CHORD CHORD CHORD
X
X 2
2 L X2
v Y
X X
AFK=1. AFK =2. AFK = 3,

CONTROL CHORD DEFINED
BY BOTH L EADING AND
TRAILING EDGE POINTS

INTERNAL WING CONTROL CHORD DEFINITION, 8=0

<
—

-————

B

TIP CONTROL
CHORD

> -

AFK = 1.

Y1

] - Y

|}

]

]

)

TIP CONTROL
) CHORD
X
AFK = 2,

WING TIP CONTROL CHORD DEFINITION,8 <0
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Card(s) 17D

Card(s) 18D

Column Code
11-20 BETA
21-30 YL,
31-40 Y
41-50 AFNU
1-10 XO
11-20 Zg
21-30 XC
31-40 ZC
1:10 P_l
51-60 P

etc, 6

Explanation

Two of the three quantities Yy, Y, or
B must be given, ATFK indicates the
appropriate pair.

The angle £, zero for all wing control
chords, except the wing tip (positive
as shown above). BETA is ignored if
AFK = 3..

Y-coordinate of the leading edge.
Yy, is ignored if AFK =2,.

Y-coordinate of the trailing edge.
YT is ignored if AFK = 1.,

= 2. the height and true chord length
are specified on the following card
17D.

= 0. the previous 17D card values are
used. Card 17D should not follow if
AFNU = 0..

= 0.

Z-coordinate at the leading edge of
control chord.

The control chord true length. If

Zp = Zp = 0, X may be given an arbi-
trary length, which is then scaled by
the program to make X equal to the
true chord length.

Z-coordinate of control chord at the
trailing edge.

Array of constant percent chord values
corresponding to the panel spanwise
edges. The leading-edge value Py = 0..
There are PLN values required with the
last value (for the trailing edge) = 100.
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Column Code

Card 19D 1-3 WBX
Card 20D 1-10

11-20
Card 21D 1-5 TDUMP
Card 22D 1-6 DEFEND

Explanation

Columns 1-3 contain the letters WBX.
This card indicates that a wing-hody
intersection is desired. For wing
only or body alone cases, this card is
omitted.

= 1, linear interpolation used on body
station perimeters to compute addi-
tional points between meridian lines
in the wing intersection region. See
upper sketch on page 106, which
illustrates linear interpolation for
the wing intersection.

= 2, biquadratic interpolation used on
body station perimeters to compute
additional points between meridian
lines in the wing intersection region.,

Dimensional intersection tolerance.
Specifies the accuracy desired in locat-
ing wing-body intersection points. A
value of 0,001 is suggested.

Columns 1-5 contain the letters TDUMP.
This card is included if a dump of geo-
metry definition and geometry transfor-
mation tapes is desired. See Appendix
C of Part II for a detailed description of
these tapes.

Columns 1-6 contain the word DEFEND.
This card ends the definition set and
must not be omitted.
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GEOMETRY PANELING CARD SET

All paneling data, except title cards and literal statements, are punched in

six-field, ten-digit format. A decimal point is required in each data field.

For body-alone case, cards 3P-14P are omitted.

For wing-alone case, cards 4P-7P are omitted.

Column Code

Card 1P 1-5 PANEL
Card 2P 1-10

11-20

21-30

Explanation

Columns 1-5 contain the word PANEL.
This is the first card in the paneling
link and must always follow the
DEFEND card.

The number of source control stations
at which the radius for an equivalent
body of circular cross section and the
actual body station centroid height are
computed. A maximum of 50 stations
may be requested. The radius at each
control station is used to determine the
source strength necessary to simulate
the body thickness. In wing-alone prob-
lem card 2P is blank.

Dimensional tolerance applied to the
additional points generated between
meridian lines on the perimeter of body
defining stations. This controls the
area and centroid location calculations.
A value of 0,001 is suggested.

This field contains an interpolation
code. The program first determines
an equivalent radius, R, at each body
defining section, X, and then estab-
lishes an R vs., X array. Interpolation
for additional radii at other stations is
performed on this array. The same
technique is used to determine centroid
locations.
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Code Explanation

Column
31-40
41-50
Card 3P 1-10 XPER
11-20 YPER
Card 4P 1-10 BODY PANEIL

121

= 1, linear interpolation for equivalent
radii and centroid locations of the
source control stations that are be-
tween body defining stations.

= 2. biquadratic interpolation for
equivalent radii and centroid locations
at the source control stations that are
between body defining stations.

= 1, linear interpolation between
meridian line points on the body
definition sections.

= 2. if biquadratic interpolation is
desired.

A dimensional tolerance value, E, such
that if any equivalent radius length or
centroid height, (z centroid), is less
than E, its value will be set equal to
zero. A value of 0.001 is suggested.

Fraction of local streamwise panel
chord at which panel control point is
located. 0. < XPER < 1..

NOTE: XPER = .95 for all cases
discussed in this report,

Fraction of local panel width at which
panel control point is located,
0. < YPER < 1,,.

NOTE: YPER = 0. is a code used
to locate the panel control
point on the chord through the
panel centroid. YPER = 0.,
for all cases discussed in this
report.

Columns 1-10 contain the words BODY
PANEL.



Card 5P

Card(s) 6P

Card(s) 7P

Card 8P

Card 9P

Column Code

1-10 PLNB*

11-20 PLNW*

21-30 TOLB

1-10 XCEPTB;

.
»
.

51-60 XCEPTB6
ete.,

1-10 =~ CODEBW,;

51-60 CODE BW6
etc.

1-10 WING PANEL

1-10 PLANE

*(PLNB + PLNW) < 21

Explanation

Number of transverse body panel edges
aft of wing trailing edge-body inter-
section < 21. See upper sketch on
page 108, If PLNB = 0., omit card 6P.

Number of transverse body panel edges
within the wing body intersection
region < 16.

Slope tolerance on body secondary panel
part leading edges. Panel parts with

slopes < = TOLB (in the local)

panel coordinate system) are eliminated.

TOLB = 0.02 is suggested,

x-values of transverse body panel edges
aft of the wing trailing edge - body
intersection. There are PLNB values.
Omit this card(s) if PLNB = 0,

Each field contains an integer identify-
ing those spanwise wing panel edges
which continue around the body to form
transverse body panel edges at the body
intersection. The table must always
start with the integer 1 and terminate
with the wing trailing-edge number.

See upper sketch on page 108. There
are PLNW values,

Columns 1-10 contain the words WING
PANEL.

Number of buttock lines which locate
the streamwise wing panel edges speci-
fied by cards 10P and 11P,

Wing-alone problem: PLANE is the
number of buttock lines locating the
streamwise panel edges including both
the wing tip and centerline.
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WING CONTROL  WING CONTROL

Column Code
i Y
(h @ (3
{4)
OR
b
ZERO-LENGTH
X CHORD
PLANE= 4,
11-20 OPTF
21-30 SNUM

)

| (@

Explanation

Wing-body problem: PLANE is the
number of huttock lines locating the
streamwisc pancl cdges, bul does not
include the inboard edge located hy the
program at the wing-body intersection.
PLANE 2 2,. Sce sketches below,

RAKED

CHORD

PLANE ~ 6,

= 1. upper and lower airfoil ordinates
are read in (cards 12P and 13P) at
each wing buttock line passing
through the panel centroids. If the
wing is untwisted and has the same
airfoil section from root to tip, only
one airfoil table is necessary. The
program will scale this table to fit
the appropriate chord.

= 0, no tables are read in and the wing
is a flat plate at zero incidence.

Number of given airfoil ordinate tables.

= 0., OPTF = 0.
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Column Code

31-40 TOLW

Card(s) 10P 1-10 YCEPT;

51-60 YCEPTg
ete.

Card 11P 1-10 CPNT

Explanation

= 1., same airfoil section from wing
root to tip.

= (PLANE - 1), wing alone case airfoils
specified.

= PLANE, wing-body case airfoils
specified.

Slope tolerance on wing secondary panel
part leading edges. Panel parts with

slopes < AY|_ TOLW are elimi~-

nated. TOLW = 0.01 is suggested.

Wing buttock line values at which
streamwise panel edges are specified.
There are (PLANE -1) values. The tip
edge is specified on card 11P.

NOTE: This card controls the outhoard
panel edge and in no way influ-
ences the spanwise edges which
are established by the geometry
definition (see page 103). The
outboard panel edge is usually
made coincident with the defini-
tion wing tip, but it may be used
to truncate the defined wing tip
and the spanwise panel edges
anywhere between the two out-
board wing buttock lines speci-
fied by card 9P. If truncation
is specified, the wing span
and area are reduced.

Code indicating how the most outboard
panel edge or wing tip is specified.

= 0, X and Y coordinates of the wing
tip leading and trailing edge are
given, Use VALUE(1) through (4).
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Cards 12P

First
Card

Second
Cards

Column Code Explanation

1. X and Y coordinates of the leading
edge and the slope (AX/AY) of the
wing tip are given. Use VALUE(1),
@) and (5).

= 2. X and Y coordinates of the trailing
edge and the slope (AX/AY) of the
wing tip are given. Use VALUE(3),
(4) and (5).

11-20 VALUE(1) X-coordinate of wing tip leading edge if
CPNT =0.o0r1..

21-30 VALUE(2) Y-coordinate of wing tip leading edge if
CPNT = 0. or1..

31-40 VALUE(3) X-coordinate of wing tip trailing edge
if CPNT = 0. or 2..

41-50 VALUE#4) Y -coordinate of wing tip trailing edge
if CPNT = 0. or 2..
. . AX
51-60 VALUE(5) wing tip slope, — ,if CPNT =1. or 2.,

] AY ’
Cards 12P and 13P give the SNUM sets of airfoil coordinates.
These card sets (12P and 13P) are always used in pairs to define

each airfoil at a given panel centroid buttock line, The card sets
are omitted if OPTF = 0..

1-10 XNUM(1) Number of points (X, Z coordinate
pairs) in upper surface airfoil ordinate
table. 4. < XNUM() < 25.,.

1-10 XFOILy Upper surface airfoil ordinate table.
Local X and Z coordinates are given
11 .20 ZF91L1 from leading edge to trailing edge. If
: : the wing has no twist, an unscaled set
41-50 XFOILg of ordinates may be given and the pro-
£1-60 ZFOIL, 5}11':;1:(11 will scale the airfoil to the local
ete. )

125



Cards 13P

First
Card

Second
Cards

Card 14P

Column Code
1-10 XNUM(2)
1-10 XFOIL;
11-20 Z FOIL1
41-50 XFOIL3
51-60 ZFOIlg
etc.
1-6 PANEND

Explanation

Number of points (x, z coordinate
pairs) in lower surface airfoil ordinate
table, 4.< XNUM@) < 25..

Lower surface airfoil ordinate table.

Columns 1-6 contain the word PANEND.
This card ends the paneling set and
must be used whenever any paneling is
performed. It is not needed for a body-
alone problem,
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AERODYNAMIC CARD SET

All aerodynamic data, except title cards and literal statements, are punched
in geven-field, ten-digit format. A decimal point is required in each data field.
Data cards 1A and 2A are input only once for a given configuration and Mach
number. The remaining aerodynamic data cards may be repeated as necessary

to solve the selected aerodynamic cases.

Column Code Explanation
Card 1A 1-11 AERODYNAMIC Columns 1-11 contain the word AERO-
DYNAMIC.
Card 2A 1-10 XMACH Mach number.

11-20 SYM

0. the aerodynamic problem solved
is unsymmetric about the vertical
X-Z plane (image panels not included,
see page 49).

= 1. the aerodynamic problem solved
is symmetric about the vertical X-Z
plane (image panels included, see

page 49).

Card 3A 1-72 TITLE Any desired title.

Card 4A 1-10 CASE = 1, calculates wing twist and camber
for a given ACp distribution on wing _
where
ACp = cp lower ~ Cp upper

= 2, calculates pressure distribution
over the configuration. Wing and
body camber can be changed within
this option.

= 3. optimizes wing twist and camber
for minimum drag.

NOTE: For body-alone problems, only
case = 2, option is available.
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Card 5A

Card(s) 6A

Column Code Explanation

11-20 CPCALC

il

0. Cp calculations use linear equation;

Cp = =2u.

1. C.. calculations use nonlinear

il

equa?ion;
2 2 2
Cp=—2u+ﬂu -V -w.
21-30 POLAR = 0, drag polar not requested.

= 1. drag polar requested. A series of
incremental angles of attack is spe-
cified on cards 10A.

31-40 THICK = 0. wing thickness pressures are not
calculated.

= 1. wing thickness pressures are
calculated.

41-50 VOUT = (. the velocity components are not
printed.

= 1. the velocity components are
printed.

1-10 RFAREA Half-wing reference area. If this field
is left blank, the program sums the
wing panel areas to obtain the reference
area which is the half wing exposed
area. For the body-alone problem, a
value must be input, or a unit area is
used.

11-20 XP x-coordinate about which the pitching
moments are computed.

21-30 ZP z-coordinate about which the pitching
moments are computed.

For configurations that include a body, two options are available
for specifying body camber. The first word on the first card is
the key to the type of input the program expects. Omit this card
set for wing-alone problems.
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Card(s) TA

Column Code
1-5 GIVEN
7-80 Any addi-
tional
identifying
symbols
1-80 Any
identifying
symbols
61-70 Zq
etc.

Explanation

Option A

Columns 1-5 contain the word GIVEN,
The program takes the body camber to
be that calculated in the geometry defi-
nition section. No additional cards are
necessary for this option.

Option B

The first card contains any arbitrary
identifying symbols (other than GIVEN
or CONSTANT as the first word) to
describe the body camber and the pro-
gram expects additional cards immedi-
ately following to specify the body
camber,

z -values or cross-section centroid
heights for Option B giving the body
camber at the x-locations of the source
control stations (see Card 2P). To
determine the exact source control
stations, it is necessary to have pre-
viously run the configuration through
the geometry sections of this program.

Calculates wing twist and camber for a given wing AC, distribution
(CASE = 1., field 1 of card 4A). Two options are avaﬁable for spe-
cifying the AC, distribution. These options are selected by the
first word on the first card of this set. Omit this set for body-

alone problems or CASE =

1-8

9-80

1-10

CONSTANT

Any addi-
tional
identifying
symbols

Acp

2, or 3..

Option A

Columns 1-8 contain the word CON-
STANT. This option restricts the wing
to have a constant AC, distribution.
This constant value is specified on the
following card.

A Cp for Option A.
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Card(s) 8A

Column

Code

1-80

1-10

61-70

etc.

Any
identifying
symbols

86,

Explanation
Option B

The first card contains any appropriate
identifying symbols (other than GIVEN
or CONSTANT as the first word) to
select Option B. A Cp for each panel is
specified on the following card set.

ACp‘s for Option B. This array must
be ordered starting with the inboard
panel at the leading edge and running
aft to the trailing edge, then proceeding
outboard to the tip in the same manner.

Calculates the pressure distribution over the configuration (CASE =
2., field 1 of card 4A). Three options are available for specifying
the camber shape of the wing. The options are selected by the first

word on the first card of this set.

Omit this set for body-alone

problems or CASE =1. or 3..

1-8

9-80

1-10

1-5

7-80

1-80

CONSTANT

Any addi-
tional
identifying
symbols

Az/Ax

GIVEN

Any addi-
tional
identifying
symbols

Any
identifying
symbols

Option A
Columns 1-8 contain the word CON-
STANT. This option restricts the wing
camber shape to have a constant slope
for each wing panel. This constant
value is specified on the following card.

Az/Ax for Option A.

Option B
The wing camber shape is specified by

the input geometry. The panel slopes
are read internally from a tape gener-
ated in the paneling section of the pro-
gram. In this case, no additional cards
are necessary.

Option C

Any appropriate identifying symbols
(other than GIVEN or CONSTANT as the
first word) on the first card of this set
are used to select this option. The wing
camber shape is specified by a slope for
each panel. Additional cards must be
input which contain the slope values.
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Card 9A

Card(s) 10A

Column Code Explanation

1-10 Az;/Axq Wing panel slopes for Option C. The

. . array must be ordered starting with the
inboard panel at the leading edge and
running aft to the trailing edge, then
proceeding outboard to the tip in the
same manner,

61-70 AZ7/A X7
etc,

Optimizes wing twist and camber for minimum drag (CASE = 3.,
field 1 of card 4A). Two options are available. The first option
optimizes the wing for a given wing lift constraint and the second
option optimizes the wing for both the wing lift and center of pres-
sure constraints. Only one data card is required. Omit this card
for a body-alone problem or CASE = 1. or 2..

1-10 CONSNT

0. the wing is optimized for minimum
drag with a wing lift constraint.

1. the wing is optimized for minimum
drag with both wing lift and x-coordi-
nate of the center of pressure
constraints.

11-20 CLBAR Wing lift coefficient constraint.

21-30 XCPBAR The x-coordinate of the wing center of
pressure constraint. If the center of
pressure is not constrained, omit this
field.

When the drag polar option is selected (POLAR = 1., field 3 of
card 4A), the values of incremental angles of attack added to the
immediately preceding case of the defined configuration are given
here. These values in degrees are specified in columns 1-10, one
value per card for as many cards as necessary. The angle of
attack series will be terminated by a blank card. Omit these cards
if the polar option is not selected (POLAR = 0.).

NOTE: Additional aerodynamic cases may be requested by return-
ing to card 3A or the aerodynamic cases for this configura-
tion and Mach number may be terminated by proceeding to
cards 11A (see figure 24 page 112).
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Cards 11A

Terminal
Card

Column Code Explanation

Two blank cards must be placed behind the last data card of each
problem, to terminate the selected aerodynamic cases for a given
configuration and Mach number.

Additional problems (new configurations or Mach numbers) may be
stacked consecutively each starting with card 1D.

Finally, a data card with the words END OF DATA punched in
columns 1-11 will terminate the run.
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5.4 Sample Input Formats

Program card input formats for three types of geometric configurations with

successive aerodynamic cases are presented on the following pages:

Body alone; pages 134-135
Wing alone; pages 137-143
Wing-body combination; pages 145-149

Body alone. — A parabolic body of revolution with a fineness ratio of 11 is
defined by 21 body stations. Ten equally spaced meridian lines are constructed.
Because each body station is circular, only one radius per station is given and
code 2, (on cards 6D, column 31) is used. On card 2P, 50 equally-spaced
source control stations are requested. Although no body paneling is required,
two panel cards (1P and 2P) are necessary to define the number of source sta-
tions and the method by which the equivalent body radii at the source stations are
interpolated.

The two aerodynamic cases specified for the parabolic body are for CASE =
2. (card 4A), that is, calculations of pressure distribution over the given configu-
ration, Both linear and nonlinear Cp calculations are requested for two angles of
attack (& = 0 degrees, is given automatically, A a = 5 degrees is specified).

Body camber is zero as given by the geometry description.
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Wing alone. — The input for a cambered and twisted arrow wing with thick-
ness is shown on the following pages. The wing planform is defined by four
points, two on the leading edge and two on the trailing edge (cards 14D, and 15D).
Two points are coincident at the tip. Two control chords are given on cards
16D through 17D. The eleven constant-percent chord lines that form span-
wise panel edges are specified on cards 18D. Wing buttock lines
forming the ten streamwise panel edges are specified on cards 10P
and 11P. A total of 100 wing panels are formed as shown in figure 26 (page 156).
The remaining cards in the paneling set are airfoil ordinate tables, one table for
each of the ten streamwise columns of panels. Each table specifies the thickness,
camber, and twist by giving upper and lower airfoil ordinates along wing buttock
lines through the spanwise centroid of each streamwise column of panels. Ex-
amples of three aerodynamic cases are given for this configuration. The first
example illustrates the input card set for CASE = 1. (card 4A), calculation of
wing twist and camber for constant pressure distribution, Cy, = .1. An additional
angle of attack of 5.73 degrees (0.1 radian) is also specified. The second exam-
ple shows the input card set for CASE = 2., calculation of pressure distribution
over a given configuration. Pressure distributions are determined at o« = 0
degrees, -2 degrees, 2 degrees, 6 degrees. The last example shows the input
card set for CASE = 3., wing optimization. A constraint of Cy, = .1 is specified;
pressures and wing shape are determined for a = 0 degrees and 5.73 degrees

(0.1 radian). All the above aerodynamic cases specify linear Cp calculations.
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Wing-body combination. — The card input format for a Boeing wing-body

configuration is shown on the following pages. The configuration has a constant-
chord swept wing, mounted below the axis of a cambered body of circular cross
section. Section 6.4 describes the configuration and paneling scheme.

Along the X-axis, 24 body stations are specified. No body camber is speci-
fied in the definition card set. Eight meridian lines are requested, The @ array
is specified so that a meridian line ( 9= 102.19 degrees) coincides with the wing
plane. The wing planform is defined by four points and four control chords.

. Cards 16D and 17D contain the four chords which locate the wing 0.25

inch below the X-Y plane. Eleven equally spaced constant percent chord lines
are specified on the wing, Card 3P locates the panel control points at 0.95 of the
local streamwise panel chords through the panel centroids. Four transverse
body panel edges aft of the wing trailing edge are located at body stations 25, 27,
29,5, and 32.415. There are no body panels aft of station 32.415.

The wing is divided into 100 panels. Wing buttock lines defining streamwise
panel edges outboard of the wing-body intersection are specified on cards 10P
The nonstreamwise wing tip edge is specified on card 11P. Only
one airfoil ordinate table is given since the wing has no twist of change in camber.

Two aerodynamic cases are specified. The first case shows the input card
set required to calculate the nonlinear pressure c;oefficients over the wing and
body at @ = 0, 2, 3, 4, and 5 degrees. Body camber is specified on cards 6A
at each of 50 source control stations, The x-locations of the source
control stations are determined by first running the geometry definition and panel-
ing sections of the program. (To do this, the PANEND card is immediately
followed by the END OF DATA card, and all aerodynamic cards are omitted.)
All force and moment coefficients are based on the half-wing area of 89.375 in.z,
as specified on card 5A.

The second case considered shows the input card set required to optimize the
wing for minimum drag at a wing Cy, of 0.1 degrees and Mach 1.8. Body camber
is again specified. ’I"he END OF DATA card terminates the input. Discussion of
results obtained for the Boeing wing-body configuration from a similar set of in-

put cards is contained in section 6.4.
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6. EXPERIMENTAL VERIFICATION

Four comparisons of experimental data with computed data are presented
and discussed. The first comparison, given in section 6.1 is for a parabolic
body. Section 6.2 discusses two arrow wings, one with camber and thickness
and one with thickness only. Pressure distributions at three angles of attack
are compared for each wing. Finally, two constant~chord, wing-body config-
urations are considered in sections 6.3 and 6.4. One configuration has an un-
swept wing, while the second has wing leading edges swept behind the Mach cone.

Body and wing pressure distributions for both configurations are compared.

6.1 Body Alone

Wind-tunnel pressure data for a body of revolution with a parabolic profile
are published in reference 16. The fineness ratio of the body is 11. The pres-
sure coefficients measured on the body at Mach 1.93 for zero incidence are
presented in the lower half of figure 25, and compared with pressure coefficients
calculated by the nonlinear formulae given by equation (102). The longitudinal
pressure distribution for zero angle of attack agrees very closely with the
wind-tunnel data.

The circumferential pressure distributions predicted by the method using
the nonlinear pressure coefficient formula for the lifting case ( a = 5 degrees)
do not follow the experimental data closely. However, they exhibit similar
trends and show comparable CP levels. The shape of the circumferential pres-
sure curve at x/L = .13 predicted by the linear Cp formula shows the better
trend, although the level is too high. A hybrid theory, similar to that suggested
by Van Dyke in reference 17 can be used to improve the agreement on the body
ahead of the maximum diameter. The hybrid theory proposes the use of the
nonlinear pressure coefficient formula given by equation (102) to estimate the
pressure due to body thickness, and the linear pressure coefficient formula
given by equation (105) to estimate the additional pressure due to camber and

incidence. The effect of the hybrid theory is to shift the linear pressure curve
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toward the nonlinear curve along the CP axis. Use of this technique on the body
behind the maximum diameter does not result in an improvement of pressure

curve shapes or levels in this example.
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FIGURE 25 COMPARISON OF THEORETICAL AND EXPERIMENTAL PRESSURE DISTRIBUTIONS

ON A PARABOLIC BODY OF REVOLUTION AT M = 1.93. FINENESS RATIO = 11.
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6.2 Wing Alone

Two arrow wings of identical planform were analyzed. A complete tabula-
tion of the experimental data for both wings is presented in reference 18. Both
wings have a 3-percent biconvex symmetrical thickness distribution. Wing 1 has
no camber or twist. Wing 2 is cambered and twisted to give theoretical minimum
drag at a design Cy of 0.08 for a given leading edge pressure constraint. Com-
parison of experimental and theoretical data is made at Mach 2.05 and presented
at five spanwise stations for three angles of attack. Figure 26 shows the plan-
form and the 100-panel layout for both wings. The paneling was chosen so that
the spanwise locations of the calculated pressures corresponded to the pressure
taps on the test wings.

The unsmoothed theoretical pressure coefficient data shown in figure 27 for
a = 0 degrees are a direct point-to-point pilot of the program output for Wing 1.
A distinct oscillation in the calculated Cp is apparent near the tip. Since this
wing has no camber, the pressure coefficients at & = 0 degrees are due to air-
foil thickness alone. The use of source singularities to represent wing thickness
results in chordwise pressure oscillations in regions where spanwise panel edges
have the same slope, or nearly the same slope, as the Mach line. The oscilla-
tions are amplified in the tip i‘eg‘ion of planforms having pointed tips and subsonic
leading edges. A good representation of the chordwise pressure distribution can
be provided by fairing through the end points of the oscillation. This type of
fairing has been applied to all the arrow wing chordwise pressure plots and is
presented as the smoothed theoretical data.

Agreement between the smoothed theoretical data and experimental data is
good, except near the tip, for both wings at low and moderate angles of attack.
At higher angles of attack the experimental pressure distributions show a distinct
change in pattern and no longer agree with linear theory predictions. This is
probably associated vyith an overexpansion of the flow on the upper surface,

followed by the formation of a shock wave and vortex.
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Satisfactory prediction of lift curves and drag polar shapes is illustrated by

the Wing 2 comparison shown below:

.048

O WIND TUNNEL
040t o PRESSURE DATA

.032 — THEQORY

D .04 o
O WIND TUNNEL DATA I,
— THEOQRY )

,008 ¢

-08 0 .08 .16 .24 .32 -08 0 .08 .16 .24 .32

The pressure distributions predicted by the program also agree well with

the linear theory calculations presented in reference 18.
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6.3 Nielsen Wing Body

A classical experiment in wing-body interference was reported by Nielsen
in reference 15. The configuration tested was a circular body of revolution with
an ogival nose and an unswept, constant-chord wing with a 10-percent thick
wedge-shaped airfoil. Model dimensions and configuration paneling are shown
in figure 29, The model was equipped with apparatus to permit changing the
wing incidence relative to the body axis. Data comparisons are made for the
wing at incidence to the body, and for the wing and body at the same angle of
attack. Only the incremental pressure coefficients above the values obtained for
the wing and body at zero incidence are shown.

For this analysis, the wing is assumed to have no thickness. The half-wing
planform is divided into one hundred equal-area panels as shown in figure 29.
The half-body region aft of the wing leading edge is represented by six equal
longitudinal strips of fourteen panels each. The calculated pressure distributions
at Mach 1,48 are presented in figures 30 through 33 at five spanwise wing sta-
tions and for three body meridians. In figure 30, the calculated pressure distri-
butions are compared with Nielsen's theoretical predictions and the experimental
data for awing = 1.92 degrees; the body incidence is zero for this example.

Both theoretical results for ng pressures agree well, except in the region en-
closed by the Mach cone from the tip, y/r = 3.92, where the present theory tends
to smooth out the pressure discontinuity. However, the program data does show
acceptable agreement with the experimental data. The present theory for body
pressures does not agree closely with Nielsen's predictions but does show excel-
lent agreement with the wind-tunnel data.

Figures 32 and 33 show pressure data comparisons for the wing and body at
the same angle of attack. The Mach number is 1.48 and the experimental data is
for a wing = ®pody = 2 degrees. Botl theories again show agreement, except
on the body, where the pressures calcu.ated by the program show closer correla-
tion to the experimental data.

The wind-tunnel test Reynolds number for both cases above is 1.5 million.
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PRESSURE TAP
LOCATIONS

BODY PRESSURE TAPS LOCATED -
ALONG BODY MERIDIAN LINES
AT 8 =0° AND 45°

ALL DIMENSIONS IN INCHES —

Y
Y
| — EDED
—-
X Vi =
100 WING PANELS
84 BODY PANELS .
8 =00, 30°, 60°, 90°, 120°, 150°, 180°
z
s
X —
= =

FIGURE 29 NIELSEN'S WING BODY CONFIGURATION AND PANELING SCHEME
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© EXPERIMENTAL
=== NIELSEN THEORY

= PRESENT METHOD o, =192°
aB =(°
RN = L.5x106
. P =C, =C
~ 90° MERIDIAN P Pa=

4% MERIDIAN
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8P -11
ay
0 + +
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BODY STATION AS FRACTION OF WING CHORD, x/c

FIGURE 30 BODY PRESSURE DISTRIBUTION FOR NIELSEN WING-BODY COMBINATION WITH WING AT INCIDENCE
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FIGURE 31 WING PRESSURE DISTRIBUTION FOR NIELSEN WING-BODY COMBINATION WITH WING AT INCIDENCE



O EXPERIMENTAL
~—— NIELSEN THEORY

3. N —— PRESENT METHOD a, 2
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FIGURE 32 BODY PRESSURE DISTRIBUTION FOR NIELSEN WING-BODY COMBINATION WITH WING AND BODY AT INCIDENCE
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© EXPERIMENTAL
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FIGURE 33 WING PRESSURE DISTRIBUTION FOR NIELSEN WING BODY COMBINATION WITH WING AND BODY AT INCIDENCE _
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6.4 DBoeing Wing-DBody

The wind-tunnel test model is a constant-chord, swept-wing configuration
with a cambered cylindrical body. Model dimensions and pressure tap locations
are given in figure 34. The body has a drooped nose and a small amount of boat
tailing. Four streamwise rows of pressure taps are located on the upper and
lower wing surfaces. The wing chord plane intersects the body side 0.25 inch
below the body axis and has no incidence relative to the body. Five longitudinal
rows of pressure taps are located on the body. The wing, with a 12-percent-
thick airfoil oriented normal to the leading edge, is pretwisted to give a flat shape
when aerodynamically loaded to a design Cy, of 0.15 at Mach 1.8. Photographs
in figure 36 show that the wing did achieve an untwisted shape at a 4-degree angle
of attack. It is this untwisted wing with camber that is analyzed by the program.

The wing half-planform is represented by 100 panels spaced as shown in
figure 37 on page 170 to obtain pressure coefficients at spanwise stations corres-
ponding to wing pressure tap locations. The body aft of the wing leading edge is
represented by 98 panels, 14 in each of 7 longitudinal strips.

Comparisons of wind tunnel and calculated wing and body pressure data are
shown in figures 37 and 38. The Mach number is 1.8 and the comparison is for
o = 4 degrees. Wing pressure predictions are good for the inboard stations.

The experimental pressure distributions indicate the formation of a shock wave

on the upper wing surface near the root trailing edge, which extends outboard and
rearward across the span. Photographs of oil flow patterns taken during the wind-
tunnel test verify the formation and location of the shock wave. The rapid recom-
pression aft of the shock and subsequent flow separation are not well represented
by the linear theory calculations,

Pressures calculated on the surface of the body, shown in figure 38, exhibit
good agreement with wind-tunnel data. The body pressures due to thickness are
calculated by the nonlinear pressure coefficient formula, equation (102). The
wing pressures and pressures on the body due to the wing are predicted by the

linear pressure coefficient formula, equation (105). The total body pressure
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distribution shown includes body thickness and wing interference effects. The
interference pressures due to the wing are added to the isolated body thickness
pressures in the region influenced by the wing.

The program input format for this wing-body configuration, paneled as
shown in figure 37, for nonlinear pressure calculations on wing and body, is
presented on pages 145 through 149 of section 5.4. This same wing-body con-
figuration, but with a different wing paneling scheme, was optimized for mini-
mum drag at a wing C, of 0.159. Discussion of the optimization follows in
section 7.0. The program input format for this latter case is contained in

Appendix C.
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VIEW OF SUPERSONIC PRESSURE MODEL SHOWING PRESSURE LEADS FROM BODY

FRONT VIEW OF PRESHAPED WING

FIGURE 35 PHOTOS OF BOEING MODEL USED TO OBTAIN EXPERIMENTAL DATA
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WIND-OFF CONDITION WITH THE TEST SECTION STING
PITCHED TO 4° ANGLE OF ATTACK. THEBUILT-IN
DOWNWARD DEFLECTION OF THE WING IS READILY
APPARENT.

WIND-ON CONDITION FOR @ =4°and M= 1.8. THE-
WING IS AT DESIGN C| AND HAS DEFLECTED INTO A
FLAT SHAPE UNDER THE AERODYNAMIC LOAD.

FIGURE 36 COMPARISON OF WNG SHAPE WITH AND WITHOUT AIRLOAD
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7. THEORETICAL OPTIMIZATION

The wing camber surface of the Boeing wing-body configuration, as desc:'ibed
in the previous section, was optimized for minimum drag with constrained liit.
Some graphical comparisons with the untwisted case are shown in figure 39, and
a complete input-output tabulation is presented in Appendix C. The paneling
chosen for this case was uniformly spaced both spanwise and chordwise on the
wing. This paneling scheme differed slightly from that used in the example pre-
sented in section 6.4; in which the panels were chosen to coincide with the
pressure tap locations. Both paneling schemes are illusirated on figure 40, page
139. Uniform panel spacing tends to minimize any undesirable oscillations in the
wing geometry or pressure distributions, in wing optimization calculations.

At the wind-tunnel model design angle of attack of 4 degrees and Mach 1.8,
the wing lift coefficient (based on the exposed wing) was 0.159. The optimized
wing lift coefficient was constrained to the same value, and the body was kept at
the same angle of attack. No constraint was placed on the center of pressure.
The optimized wing camber surface reduced the wing drag by 19 percent (from
0.00936 to 0,.00761) and the total configuration drag by 23 percent (from 0.01101
to 0.00849). A greater load was carried by the wing root, improving the span-
wise lift distribution. The additional body load increased the total lift and
reduced the negative pitching moment.

The additional load on the body due to the wing is shown by the top and bottom
meridian pressure distributions in figure 39, Changes in the body interference
pressures are larger toward the wing-body junction leading edge, where the
major change occurred in the wing root pressure distribution. The chordwise
pressure distributions on the wing show the effect of the optimized camber sur-
face. Wing thickness effects are unchanged. In general the maximum camber
location was moved more toward the trailing edge. Viscous limitations on the
pressure gradients at the trailing edge would probably make some of the camber

revision impractical.
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Although the details ol the optimized wing geometry are nol shown in ligurc
39, the tabular panel slope data are given in Appendix C. The optimization shows an
increasce in wing incidence at the root and a decrease in the incidence of the next-
to-last spanwisce station near the highly loaded wing tip.,  Additional fine pancling

in cach ol these areas could give more detail of the optimum geometry.,
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8., CONCLUSIONS

A digital computer program for calculating wing-body interference problems
in supersonic flow has been developed. The program is based on the method of
acrodynamic influence coefficients. A special effort has been made to reduce
the number of geometric description inputs, and has significantly increased the
practical value of the program.

A wide variety of aerodynamic problems involving wings, bodies, or wing-
body combinations can be solved. The program may be used to determine the
pressures, forces, and moments on given configurations; or to determine the
wing camber surface corresponding to a given aerodynamic loading. In particu-
lar, the wing camber surface required to minimize the drag under given con-
straints of lift, or lift and pitching moment, may be calculated. The results of
the program have been compared with other theories and experiments, and show

good agreement in all cases.
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9. APPENDIXES

9.1 Appendix A - Preliminary Results of Integration

In the solution of certain problems concerning the linearized theory of super-
sonic aerodynamics, scveral integrals of standard form occur repeatedly; their
evaluation can be carried out by elementary methods. Here is given a brief out-

line of the integration procedure and a summary of the results.

d
lef v N
(v2+ez)\/a2v2+2bv+c

3 :f vdyv
2
(v2 + ez) \/112 vi+ 2bv +oc
Let the following substitution be made:

v = bz—acu2+1_13
22 ul -1 a ’

_2a2f @? -1 du
! Va H2 -ac)u2+1)2-2bVb2 -acut-1)+bZuZ-1)2+e2 a2@u2 -1)2

Va 1 1 fb?-ac -b+aei

= tan

el \/a2e2+2abei—ac AVb%Z -ac+b -aei
1 -1 ’\/bé—ac—b-aeiu

tan

1\/azez—Zabei—ac Vb2 -ac + b + aei

o]

A

Y

2|

The ahove results can be simplified by the following consideration:

Vb2 —ac - b + a ei
Vb2 —ac + b -aei

let tan~1 u=o+if,
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and \/ae2+2b ei -c=y¥ +1i6b

then y2 - 62 =ae? - ¢ and ¥ 6 = be,and ¥ satisfies the equation:

¥4 (ae2 -c)y2 - pZe2 - 0.

Furthermore,

g -Ya_a+ip  Na _o-if
Lol +i6) T Wag -6

b ¥

1 y3
- po + 2 —X—— 28

Vb2 -ac - b+aei
Vb? -ac + b -aei

On the other hand, since tan (@ + i 8) = * there follows

tan 20 + i tanh 28  VavZ+2bv+ie (¥ +id)
1-itan 2 tanh 2B bv+c-i(b+av)e

Equating the real and the imaginary parts of the above equation, we get

bv+c)tan 20+ (b+av)etanh 28 =Vav2+ 2b v+c (¥ + 6 tan 20 tanh 2 §)

(bv+c)tanh 28 - b+avjetan2c = VavZ + 2 v +c (5 -7 tan 20 tanh 2 B)

which gives the following solution for « and 8:

2 2
a=%tan'1 pa b v : a:—;—tan"lz‘\/av +2b2v+c
y'Jav2+2bv+c bv -%
1 -1 vy + eb 1 _1e\/av2+2bv+c
Bzgtanh ; B=5tanh Y + ed
e\/av2+2bv+c M

The above results for @ and 8 can now be substituted for the expression

for J;, and, omitting the integration constant, we have

dv _ b ¥ tan-1 bv—‘)’2
2 4 o2y /g v2 4, p2e2 Ja v2
(ve+e“)Vavé+2bv+e 7Y e YNavé+2bv+e
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or

where ¥ is a non-zero

O =be. For e=0

Y

dv

1 ‘)/3 _le\/uv2+2bv+c
+ = tanh 5
e74+b262 vVY+ e
by _1‘)/‘/av2+2bv+c
= tan
‘)/4+b292 72__bv
3
1 Y
e 4. .2 ztanh_l L)
Y*+b%e evav2+2bv+e

root of the equation: y4 - (a e - c) y2 -b%2e2 = 0 and

then taking ¥ = ¥ -¢ we obtain

-1 bv+ec _\/av2+2bv+c

J;

\/gv2+2bv+c

It

or

In a like manner,

vdv

b
- tan
cV -c V-c\/av2+2bv+c cv

b an_l\/—c'\/av2+2bv+c _Vav2+2bv+c

- (b v +ec) cv

t

cV -C

the integral for J, can be evaluated:

J

(v2 + e2) \/a v2+ 2 v

or

= )/3 tan~1 bv-)’z
+c 7/4+b262 )M/av2+2bv+c
beYy _le\/av2+2bv+c
I R 5
y*+b“e vy te
_ 23 tan_l}/N/;.vz +2b v + ¢
y4+b2e2 yz_bv
_ 4bezz tanh_l vy + eb
Y +b e e\/av2+2bv+c

where ¥ and 6 are defined as before.
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Y.2 Appendix B - Velocity Functions

Equations (58) and (59) in the text give expressions for the three velocity
components, u', v', w', ata point (x', y's z'), induced by a surface distribution
of singularities located in the plane z' = ax', and bounded by the x', y' plane
and the plane y' = mx'. The primed coordinate system has its origin at the apex
of this triangular region, with the x' axis parallel to the free stream.

Three velocity functions, P, S, and D, are defined by equation (59) in terms

of the variables a', b', &', y', and z', where

a'=fa =48 tan

y_ 1 _tan A
L I
£ = x'/8

and x', y', and z' are given in equation 57).

At points for which &' > Vy'2 + 2'2 | the functions P, S, and D may in turn
be expressed most simply in terms of seven auxiliary functions, F1 through F7,
as given in equation (37). These functions are rewritten below in terms of the

primed variables.

Fl = zf_algl 1 j‘ (b'y‘ _ gv) _ ai(alblyl _ z!) + bt(zt - ga! £|)2

= IZ' —a'E'[COS_

(1)

For z'=a' ¢

Fl=n1m for 0 <y' <&M
=m/2 for y'=0, £/
=0 for y'<o0, y'> &N
-4 SR S 1o 1
F2 = 1 cosh™! b'e -y —ab @)
\/va(l_aIZ) -1 ’\/(b'y'—g')z + va(Zl_avgr)2 - (a'b'y'—z')?-

for b' > 1M1 —ar2
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—

NEYZ g2 2 SE—
Vg Y % for bt = 1/V1 - a*?

£ -y
1£y | S | S ]
) )1 : cos-l - h'€' - y' - ah'z
. . & & 1)
V1 - H'(1 - a'™) \/(b'y' - €')z + b'Z(Z' -a' €9 - (a'h'y' - Z')2
for b'< 1/V1 - a'?,
Py = ETADY oos7] - £ abizy) b+ 2
R [ [ s !

IZ a'b'y I \/(y'2+z‘2) by —§')2+b'2(z' _avgv)z -(@'b'y' —Z')?‘

For =z' = a'b'y’

F3 =1 for 0 <y <¢&h
=7m/2 for y'=0, y'=£&/M
=0 for yh <0, y'> &M

Mt
F3 = F1 = - cos~l =202
V14 ar?pr?
Fi=F3 - (1+a?p?) Fl for y'<o0
— 21'2 b'2 F3 for y' =0

=F3 - (1+a?b?)(F1+2m  for y'>o0,
and a'h'y' <z'<a'g
= (1 +a®b?)(F1 + m for y' >0,
and a'b'y' =z' < a'é§!
F5 = cosh™1 &
i 4 o0

1 _ gttt
F6 =+~N1 - a'2 cosh~1 § az

\/(z' - artgn? 4 (,1 - ar2y yr2

F7 = F5 - (1 + a'2h'2) Fe
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For surface distributions of vorticity (constant pressure surfaces), the veloc-

ity functions may now be expressed in terms of these seven auxiliary functions,
as follows, provided §' > Vy'z + 2% and a' > 0:

If

P=-

Fl

m
b2 o - o]
_ab'(b"(1 -a") - 1] F2 + b' F3 + F7/a’

m(1l + a2 p'2)

_ [b'z(l - a1?) - 1J F2 - b' F5 + F4/a'

T + a? b'?)

If a'= 0, the same expressions apply, except

1
F4/a|__.__L
12 4 412

y

2z
g — %2
F1/a 12 4 Z|2

y

N E——

Ve? - g2+ 2

a' < 0, the velocity functions are the same as for a' > 0, except that a' is

replaced by -a', z' is replaced by -z', and D by -D. In addition, P = -P if

z =a'§', for a' < 0.

For &' < '\/y'2 + 712 , the functions P, S, and D are zero except within

the envelope of the Mach cones from the leading edge for the supersonic leading-
edge case (that is, b' < 1/41 - a'2),
g - by abiz) ¢ lz' - abry'l V1 - b2a - ad

g
i

wn
1

=)
[

0,
i

In this case, for
+ B/2

2(1 + a'2 b'2)

+
2(1 + a'2 p*?) (

1+ a'2p?

B - L <1 Fa'V1-b'2(1 -a'2)>

a'b'+ V1 -b'2(1 - a'z)) or
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'z——é—z 1¥a'W1-b'2(1-af
Y 2 Ak ( ( )
y' S €|/bv

1 #a'V1 -b2(1 - 2'?)
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£ b'yy' + a'b'z)y + z' - a'b'y! \/1 - l)'z(l —a‘i

For
1+ a2 2
and E'/b' oyt —15“2 1 ¥Fa \/1 '2(1 —11'2) >
1+ a'™ b’
P B for z' > a' &'

for z' < a' !

S = —ﬂL (1 -~ a1 - b'3(1 —a'z))

1+ at2 b'2

for z' > a'b'y'

1

o

D - (avb' + 1 -be2 - a'2)>

1+a'

1+ a2 b'2
for z' <a'b'y’

35,

s - ——Bbl (1 + a1 b2 —a‘2)>

Cabt 4 V1 b1 - a?)
1+ a2pr?

S = _é__'ll \/1 b'2(l _avz)
1+ a2 p2

for z' = a'b'y’

p-—B i h2a-a

C1+ap?

The geometry of this case is illustrated in the sketch in the following page
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MACH CONE y = __E'_ﬁ'_(l_a- [ 1_b201-a1 )
—_ - 12412
STERTS —- B 1
€=V y24"2 g ~I-
oy
/
/

N Teal
N ~~a
\ \\\\
\\ “\\
/ =3 §' \ 7
/ \ Vs
/ \ \\i\ \ //
l 1\:a\) \ //
: — 1
{ J 4 l y'
\ { pd y=§&n'
\ 7
\ / //
\ //
\ v
\

/s
N G hl [

ENVELOPE OF MACH CONES FROM LEADING EDGE:

by 42 atbiy ]/ 1-b121 - a2y
f p—

B 1 4+a'2p12

For surface distributions of sources, the velocity components are required
only for the case a' = 0. Then, for £ > Vy'z + g2

F2
P——ﬁ"
1
S =35 (O F2 - Fs5)
F1
D=5y

For §' < Vy'2 + 212 » the functions are all zero except within the envelope

of the Mach cones from the leading edge of the supersonic leading-edge case,
b' < 1,
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In this case, for &' - b'y' + I Z'I N1 - ht2

p_ 1
241 - p'2
b y'Zb'g’
S = ——
241 —b'z y' < €'/b'
1
D -+ 5

P=S=D=0 for y'<b'é&, or y'>&/N

For &' >b'y' + 2' V1 b2

and €'/b'>y'b'€'
S
V1 - b
t
g - —2___
241 - p'2
D=x1

where the upper sign corresponds to z = 0.
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9.3 Appendix C - Sample Wing-Body Case Printout

A sample printout is given here for the wing optimization of the Boeing
wind-tunnel model described in section 6.4 A comparison between the planar
and optimized wing cases is presented in section 7. 0.

The uniform panel layout used for this example is shown in the upper sketch

on figure 40.
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